K3 surfaces over number fields and the Mumford--Tate conjecture
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 191-208
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a K3 surface $S$ over a number field $k$, the author computes the semisimple part of the Lie algebra of the image of the $l$-adic representation in 2-dimensional cohomology of $S$ under the condition that $\operatorname{rank}NS(S\otimes_k\bar k)\ne2$.
@article{IM2_1991_37_1_a7,
author = {S. G. Tankeev},
title = {K3 surfaces over number fields and the {Mumford--Tate} conjecture},
journal = {Izvestiya. Mathematics },
pages = {191--208},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a7/}
}
S. G. Tankeev. K3 surfaces over number fields and the Mumford--Tate conjecture. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 191-208. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a7/