K3 surfaces over number fields and the Mumford--Tate conjecture
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 191-208

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a K3 surface $S$ over a number field $k$, the author computes the semisimple part of the Lie algebra of the image of the $l$-adic representation in 2-dimensional cohomology of $S$ under the condition that $\operatorname{rank}NS(S\otimes_k\bar k)\ne2$.
@article{IM2_1991_37_1_a7,
     author = {S. G. Tankeev},
     title = {K3 surfaces over number fields and the {Mumford--Tate} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {191--208},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - K3 surfaces over number fields and the Mumford--Tate conjecture
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 191
EP  - 208
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a7/
LA  - en
ID  - IM2_1991_37_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T K3 surfaces over number fields and the Mumford--Tate conjecture
%J Izvestiya. Mathematics 
%D 1991
%P 191-208
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a7/
%G en
%F IM2_1991_37_1_a7
S. G. Tankeev. K3 surfaces over number fields and the Mumford--Tate conjecture. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 191-208. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a7/