Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 97-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Full asymptotic expansions are found and justified for solutions of problems with smooth obstructions on the boundary $\partial\Omega$ and in the domain $\Omega\subset\mathbf R^n$ for the operator $-\varepsilon^2\Delta^2+1$ with a small parameter $\varepsilon$ on the highest derivatives. In the construction of the asymptotics of solutions one formally computes an asymptotic expansion of the equation that yields a singular submanifold (for example, of a surface where the type of the boundary conditions changes). Near such surfaces there occur additional boundary layers, which are determined by solving both ordinary and partial differential equations.
@article{IM2_1991_37_1_a4,
     author = {S. A. Nazarov},
     title = {Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {97--117},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 97
EP  - 117
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/
LA  - en
ID  - IM2_1991_37_1_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives
%J Izvestiya. Mathematics 
%D 1991
%P 97-117
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/
%G en
%F IM2_1991_37_1_a4
S. A. Nazarov. Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 97-117. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/