Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 97-117
Voir la notice de l'article provenant de la source Math-Net.Ru
Full asymptotic expansions are found and justified for solutions of problems with smooth obstructions on the boundary $\partial\Omega$ and in the domain $\Omega\subset\mathbf R^n$ for the operator $-\varepsilon^2\Delta^2+1$ with a small parameter $\varepsilon$ on the highest derivatives. In the construction of the asymptotics of solutions one formally computes an asymptotic expansion of the equation that yields a singular submanifold (for example, of a surface where the type of the boundary conditions changes). Near such surfaces there occur additional boundary layers, which are determined by solving both ordinary and partial differential equations.
@article{IM2_1991_37_1_a4,
author = {S. A. Nazarov},
title = {Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives},
journal = {Izvestiya. Mathematics },
pages = {97--117},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives JO - Izvestiya. Mathematics PY - 1991 SP - 97 EP - 117 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/ LA - en ID - IM2_1991_37_1_a4 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives %J Izvestiya. Mathematics %D 1991 %P 97-117 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/ %G en %F IM2_1991_37_1_a4
S. A. Nazarov. Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 97-117. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a4/