Identities of finitely generated algebras over an infinite field
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 69-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for each finitely generated associative PI-algebra $U$ over an infinite field $F$, there is a finite-dimensional $F$-algebra $C$ such that the ideals of identities of the algebras $U$ and $C$ coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for $T$-ideals.
@article{IM2_1991_37_1_a3,
     author = {A. R. Kemer},
     title = {Identities of finitely generated algebras over an infinite field},
     journal = {Izvestiya. Mathematics },
     pages = {69--96},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a3/}
}
TY  - JOUR
AU  - A. R. Kemer
TI  - Identities of finitely generated algebras over an infinite field
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 69
EP  - 96
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a3/
LA  - en
ID  - IM2_1991_37_1_a3
ER  - 
%0 Journal Article
%A A. R. Kemer
%T Identities of finitely generated algebras over an infinite field
%J Izvestiya. Mathematics 
%D 1991
%P 69-96
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a3/
%G en
%F IM2_1991_37_1_a3
A. R. Kemer. Identities of finitely generated algebras over an infinite field. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 69-96. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a3/

[1] Kemer A. R., “Predstavimost privedenno-svobodnykh algebr”, Algebra i logika, 27:3 (1988), 274–294 | MR | Zbl

[2] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 26:5 (1987), 597–641 | MR

[3] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Matem. sb., 43:2 (1957), 277–283 | Zbl

[4] Beidar K. I., “K teoremam A. I. Maltseva o matrichnykh predstavleniyakh algebr”, UMN, 41:5 (1986), 161–162 | MR | Zbl

[5] Braun A., “The nilpotency of the Radical in a Finitely Generated PI-Ring”, J. Algebra, 89:2 (1984), 375–396 | DOI | MR | Zbl

[6] Levin J., “A matrix representation for associative algebras”, Trans. Amer. Math. Soc., 188:2 (1974), 293–317 | MR