Identities of finitely generated algebras over an infinite field
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 69-96
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for each finitely generated associative PI-algebra $U$ over an infinite field $F$, there is a finite-dimensional $F$-algebra $C$ such that the ideals of identities of the algebras $U$ and $C$ coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for $T$-ideals.
@article{IM2_1991_37_1_a3,
author = {A. R. Kemer},
title = {Identities of finitely generated algebras over an infinite field},
journal = {Izvestiya. Mathematics },
pages = {69--96},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a3/}
}
A. R. Kemer. Identities of finitely generated algebras over an infinite field. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 69-96. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a3/