Two-weighted estimates of Riemann--Liouville integrals
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 669-681
Voir la notice de l'article provenant de la source Math-Net.Ru
Weighted estimates
\begin{equation}
\left(\int\limits_0^\infty|I_rf(x)u(x)|^q\,dx\right)^{1/q}\leqslant C\left(\int\limits_0^\infty|f(x)v(x)|^p\,dx\right)^{1/p}
\end{equation}
are considered, where the constant $C$ does not depend on $f$, for fractional Riemann– Liouville integrals
$$
I_r(f(x)=\frac {1}{\Gamma (r)}\int\limits_0^x(x-t)^{r-1}f(t)\,dt,\quad r>0,
$$
and the following problem is examined: find necessary and sufficient conditions on weight functions $u$ and $v$ under which estimate (1) is valid for all functions for which the right-hand side of (1) is finite. The problem is solved for $1\leqslant p\leqslant q\leqslant\infty$ and $r>1$. This result is definitive, and it generalizes known results for integral operators when $r=1$.
@article{IM2_1991_36_3_a9,
author = {V. D. Stepanov},
title = {Two-weighted estimates of {Riemann--Liouville} integrals},
journal = {Izvestiya. Mathematics },
pages = {669--681},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a9/}
}
V. D. Stepanov. Two-weighted estimates of Riemann--Liouville integrals. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 669-681. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a9/