Two-weighted estimates of Riemann--Liouville integrals
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 669-681

Voir la notice de l'article provenant de la source Math-Net.Ru

Weighted estimates \begin{equation} \left(\int\limits_0^\infty|I_rf(x)u(x)|^q\,dx\right)^{1/q}\leqslant C\left(\int\limits_0^\infty|f(x)v(x)|^p\,dx\right)^{1/p} \end{equation} are considered, where the constant $C$ does not depend on $f$, for fractional Riemann– Liouville integrals $$ I_r(f(x)=\frac {1}{\Gamma (r)}\int\limits_0^x(x-t)^{r-1}f(t)\,dt,\quad r>0, $$ and the following problem is examined: find necessary and sufficient conditions on weight functions $u$ and $v$ under which estimate (1) is valid for all functions for which the right-hand side of (1) is finite. The problem is solved for $1\leqslant p\leqslant q\leqslant\infty$ and $r>1$. This result is definitive, and it generalizes known results for integral operators when $r=1$.
@article{IM2_1991_36_3_a9,
     author = {V. D. Stepanov},
     title = {Two-weighted estimates of {Riemann--Liouville} integrals},
     journal = {Izvestiya. Mathematics },
     pages = {669--681},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a9/}
}
TY  - JOUR
AU  - V. D. Stepanov
TI  - Two-weighted estimates of Riemann--Liouville integrals
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 669
EP  - 681
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a9/
LA  - en
ID  - IM2_1991_36_3_a9
ER  - 
%0 Journal Article
%A V. D. Stepanov
%T Two-weighted estimates of Riemann--Liouville integrals
%J Izvestiya. Mathematics 
%D 1991
%P 669-681
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a9/
%G en
%F IM2_1991_36_3_a9
V. D. Stepanov. Two-weighted estimates of Riemann--Liouville integrals. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 669-681. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a9/