The group $K_3$ for a field
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 541-565

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a description of the torsion and cotorsion in the Milnor groups $K_3^M(F)$ and $K_3(F)_{nd}=\operatorname{coker}(K_3^M(F)\to K_3(F))$ for an arbitrary field $F$. The main result is that, for any natural number $n$ with $(\operatorname{char}F,n)=1$, $_nK_3(F)_{nd}=H^0(F,\mu_n^{\otimes 2})$, $K_3(F)_{nd}/n=\operatorname{ker}(H^1(F,\mu_n^{\otimes 2})\to K_2(F))$ and the group $K_3(F)_{nd}$ is uniquely $l$-divisible if $l=\operatorname{char}F$. This theorem is a consequence of an analogue of Hilbert's Theorem 90 for relative $K_2$-groups of extensions of semilocal principal ideal domains. Among consequences of the main result we obtain an affirmative solution of the Milnor conjecture on the bijectivity of the homomorphism $K_3^M(F)/2\to I(F)^3/I(F)^4$, where $I(F)$ is the ideal of classes of even-dimensional forms in the Witt ring of the field $F$, as well as a more complete description of the group $K_3$ for all global fields.
@article{IM2_1991_36_3_a4,
     author = {A. S. Merkur'ev and A. A. Suslin},
     title = {The group $K_3$ for a field},
     journal = {Izvestiya. Mathematics },
     pages = {541--565},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
AU  - A. A. Suslin
TI  - The group $K_3$ for a field
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 541
EP  - 565
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/
LA  - en
ID  - IM2_1991_36_3_a4
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%A A. A. Suslin
%T The group $K_3$ for a field
%J Izvestiya. Mathematics 
%D 1991
%P 541-565
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/
%G en
%F IM2_1991_36_3_a4
A. S. Merkur'ev; A. A. Suslin. The group $K_3$ for a field. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 541-565. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/