The group $K_3$ for a field
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 541-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a description of the torsion and cotorsion in the Milnor groups $K_3^M(F)$ and $K_3(F)_{nd}=\operatorname{coker}(K_3^M(F)\to K_3(F))$ for an arbitrary field $F$. The main result is that, for any natural number $n$ with $(\operatorname{char}F,n)=1$, $_nK_3(F)_{nd}=H^0(F,\mu_n^{\otimes 2})$, $K_3(F)_{nd}/n=\operatorname{ker}(H^1(F,\mu_n^{\otimes 2})\to K_2(F))$ and the group $K_3(F)_{nd}$ is uniquely $l$-divisible if $l=\operatorname{char}F$. This theorem is a consequence of an analogue of Hilbert's Theorem 90 for relative $K_2$-groups of extensions of semilocal principal ideal domains. Among consequences of the main result we obtain an affirmative solution of the Milnor conjecture on the bijectivity of the homomorphism $K_3^M(F)/2\to I(F)^3/I(F)^4$, where $I(F)$ is the ideal of classes of even-dimensional forms in the Witt ring of the field $F$, as well as a more complete description of the group $K_3$ for all global fields.
@article{IM2_1991_36_3_a4,
     author = {A. S. Merkur'ev and A. A. Suslin},
     title = {The group $K_3$ for a field},
     journal = {Izvestiya. Mathematics },
     pages = {541--565},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
AU  - A. A. Suslin
TI  - The group $K_3$ for a field
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 541
EP  - 565
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/
LA  - en
ID  - IM2_1991_36_3_a4
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%A A. A. Suslin
%T The group $K_3$ for a field
%J Izvestiya. Mathematics 
%D 1991
%P 541-565
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/
%G en
%F IM2_1991_36_3_a4
A. S. Merkur'ev; A. A. Suslin. The group $K_3$ for a field. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 541-565. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a4/

[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[2] Izhboldin O. T., “O podgruppe krucheniya $K$-grupp Milnora”, DAN SSSR, 294:1 (1987), 30–33 | MR | Zbl

[3] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1046 | MR

[4] Suslin A. A., “Algebraicheskaya $K$-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Nov. dostizh., 25, 1984, 115–209 | MR

[5] Auslander M., Goldman O., “The Brauer group of commutative ring”, Trans. Amer. Math. Soc., 97 (1960), 367–409 | DOI | MR

[6] Bass H., Tate J., “The Milnor ring of a global field”, Lecture Notes in Math., 342, 1972, 349–446 | MR

[7] Borel A., “Stable real cohomology of arithmetic groups”, Ann. Scient. Ec. Norm. Super, 7 (1974), 286–272 | MR

[8] Chase S., Harrison D., Rosenberg A., “Galois theory and Galois cohomology of commutative rings”, Mem. Amer. Math. Soc., 1966, no. 52, 15–31 | MR

[9] Gersten S. M., “Higher $K$-theory of rings”, Lecture Notes in Math., 341, 1973, 3–42 | MR | Zbl

[10] Grayson D., “Finite generation of $K$-groups of a curve”, Lecture Notes in Math., 966, 1982, 69–91 | MR

[11] Grothendieck A., “Le groupe de Brauer”, Dix Exposes sur la cohomology des schemas, North-Holland, Amsterdam, 1968, 46–188 | MR

[12] Lee R., Szczarba R., “The group $K_3(Z)$ is cyclic of order 48”, Ann. Math., 104 (1976), 31–60 | DOI | MR | Zbl

[13] Lichtenbaum S., “The construction of weight-two arithmetic cohomology”, Invent. Math., 88 (1987), 183–215 | DOI | MR | Zbl

[14] Merkurjev A. S., Suslin A. A., On the $K_3$ of a field, Preprint E-2-87, LOMI, 1987

[15] Milnor J., “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9:4 (1970), 318–344 | DOI | MR | Zbl

[16] Quillen D., “On the cohomology and $K$-theory of the general linear group over a finite field”, Ann. Math., 86 (1972), 552–586 | DOI | MR

[17] Quillen D., “Finite generation of the group $K_3$ of rings of algebraic integers”, Lecture Notes in Math., 341, 1973, 179–198 | MR | Zbl

[18] Quillen D., “Higher $K$-theory, I”, Lecture Notes in Math., 341, 1973, 85–147 | MR | Zbl

[19] Shapiro J., “Relations between the Milnor and Quillen $K$-theory”, J. Pure and Applied Algebra, 20 (1981), 93–102 | DOI | MR | Zbl

[20] Soule C., “$K$-theory des anneaux d'entiers de corps de nombres et cohomologie etale”, Invent. Math., 56 (1979), 251–295 | DOI | MR

[21] Staffeld R., “Reduction theory and $K_3$ of the Gaussian integers”, Duke Math. J., 46:4 (1979), 773–791 | DOI | MR

[22] Suslin A. A., “Homology of $GL_n$, characteristic classes and Milnor $K$-theory”, Lecture Notes in Math., 1046, 1984, 357–375 | MR | Zbl

[23] Suslin A. A., “On the $K$-theory of algebraically closed fields”, Invent. Math., 73 (1983), 241–245 | DOI | MR | Zbl

[24] Suslin A. A., “On the $K$-theory of local fields”, J. Pure and Applied Algebra, 34 (1984), 301–318 | DOI | MR | Zbl

[25] Tate J., “Relations between $K_2$ and Galois cohomology”, Invent. Math., 36 (1976), 257–274 | DOI | MR | Zbl

[26] Wiebel C., “Mayer–Vietoris sequences and $\mod{p}$ $K$-theory”, Lecture Notes in Math., 966, 1982, 390–486

[27] Wiebel C., “Mennicke-type symbols for relative $K_2$”, Lecture Notes in Math., 1046, 1984, 461–464