Deforming torison-free sheaves on an algebraic surface
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 449-485

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the question of removability of singularities of torsion-free sheaves on algebraic surfaces in the universal deformation and the existence in it of a nonempty open set of locally free sheaves, and describes the tangent cone to the set of sheaves having degree of singularities larger than a given one. These results are used to prove that quasitrivial sheaves $\mathscr F$ on an algebraic surface $X$ with $c_2(\mathscr F)>(r+1)\max(1,p_g(X))$ have a universal deformation whose general sheaf is locally free and stable relative to any ample divisor on $X$, and thereby to find a nonempty component of the moduli space of stable bundles on $X$ with $c_1=0$ and $c_2>\max(1,p_g(X))\cdot(r+1)$ on any algebraic surface.
@article{IM2_1991_36_3_a0,
     author = {I. V. Artamkin},
     title = {Deforming torison-free sheaves on an algebraic surface},
     journal = {Izvestiya. Mathematics },
     pages = {449--485},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a0/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Deforming torison-free sheaves on an algebraic surface
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 449
EP  - 485
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a0/
LA  - en
ID  - IM2_1991_36_3_a0
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Deforming torison-free sheaves on an algebraic surface
%J Izvestiya. Mathematics 
%D 1991
%P 449-485
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a0/
%G en
%F IM2_1991_36_3_a0
I. V. Artamkin. Deforming torison-free sheaves on an algebraic surface. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 449-485. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a0/