Deforming torison-free sheaves on an algebraic surface
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 449-485
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper investigates the question of removability of singularities of torsion-free sheaves on algebraic surfaces in the universal deformation and the existence in it of a nonempty open set of locally free sheaves, and describes the tangent cone to the set of sheaves having degree of singularities larger than a given one. These results are used to prove that quasitrivial sheaves $\mathscr F$ on an algebraic surface $X$ with $c_2(\mathscr F)>(r+1)\max(1,p_g(X))$ have a universal deformation whose general sheaf is locally free and stable relative to any ample divisor on $X$, and thereby to find a nonempty component of the moduli space of stable bundles on $X$ with $c_1=0$ and $c_2>\max(1,p_g(X))\cdot(r+1)$ on any algebraic surface.
@article{IM2_1991_36_3_a0,
author = {I. V. Artamkin},
title = {Deforming torison-free sheaves on an algebraic surface},
journal = {Izvestiya. Mathematics },
pages = {449--485},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a0/}
}
I. V. Artamkin. Deforming torison-free sheaves on an algebraic surface. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 449-485. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a0/