Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1991_36_2_a6, author = {A. S. Merkur'ev and A. A. Suslin}, title = {The norm residue homomorphism of degree~three}, journal = {Izvestiya. Mathematics }, pages = {349--367}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {1991}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a6/} }
A. S. Merkur'ev; A. A. Suslin. The norm residue homomorphism of degree~three. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 349-367. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a6/
[1] Merkurev A. S., “O simvole normennogo vycheta stepeni dva”, DAN SCCP, 261:3 (1981), 542–547 | MR
[2] Merkurev A. S., “Gruppa $SK_2$ dlya algebr kvaternionov”, Izv. AN CCCP. Ser. matem., 52:2 (1988), 310–335 | MR
[3] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1046 | MR
[4] Merkurjev A. S., Suslin A. A., On the $K_3$ of a field, Preprint E-1-87, LOMI, 1987, 23 pp.
[5] Suslin A. A., “Algebraicheskaya $K$-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 25, 1984, 115–209 | MR
[6] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[7] Arason J. K., “Cohomologische Invarianten Quadratischer Formen”, J. Algebra, 36 (1975), 448–491 | DOI | MR | Zbl
[8] Bass H., Tate I., “The Milnor ring of a global field”, Lecture Notes in Math., 342, 1972, 349–446 | MR
[9] Elman R., Lam T.-Y., “Pfister forms and $K$-theory of fields”, J. Algebra, 23 (1972), 181–213 | DOI | MR | Zbl
[10] Lam T.-Y., The algebraic theory of quadratic forms, Reading. Mass., Benjamin, 1973 | MR | Zbl
[11] Merkurjev A. S., Suslin A. A., On the norm residue homomorphism of degree 3, Preprint E-9-86, LOMI, 1986
[12] Milnor I., “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9:4 (1970), 318–344 | DOI | MR | Zbl
[13] Quillen D., “Higher $K$-theory”, Lecture Notes in Math., 341, 1973, 85–147 | MR | Zbl
[14] Rehmann U., Stuhler U., “On $K_2$ of finite dimensional division algebras over arithmetic fields”, Invent. Math., 50 (1978), 45–90 | DOI | MR
[15] Sherman C., “Some theorems on the $K$-theory of coherent sheaves”, Comm. Algebra, 7:14 (1979), 1489–1508 | DOI | MR | Zbl
[16] Swan R., “$K$-theory of quadric hypersurfaces”, Ann. Math., 122:1 (1985), 113–154 | DOI | MR
[17] Tate J., “Relations between $K_2$ and Galois cohomology”, Invent. Math., 36 (1976), 257–274 | DOI | MR | Zbl