The norm residue homomorphism of degree~three
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 349-367

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of Hilbert's Theorem 90 is proved for the Milnor groups of the fields $K_3^M$. Specifically, let $L/F$ be a quadratic extension, and let be the generator of the Galois group. Then the sequence $$ K_3^M(L)\stackrel{1-\sigma}{\longrightarrow}K_3^M(L)\stackrel{N}{\longrightarrow}K_3^M(F) $$ is exact. As a corollary one can prove bijectivity of the norm residue homomorphism of degree three: $$ K_3^M(F)/2^nK_3^M(F)\to H^3(F,\mu_{2^n}^{\otimes 3}). $$ Finally, the 2-primary torsion in $K_3^M(F)$ is described: if the field $F$ contains a primitive $2^n$th root of unity $\xi$, then the $2^n$-torsion subgroup of $K_3^M(F)$ is $\{\xi\}\cdot K_2(F)$.
@article{IM2_1991_36_2_a6,
     author = {A. S. Merkur'ev and A. A. Suslin},
     title = {The norm residue homomorphism of degree~three},
     journal = {Izvestiya. Mathematics },
     pages = {349--367},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a6/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
AU  - A. A. Suslin
TI  - The norm residue homomorphism of degree~three
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 349
EP  - 367
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a6/
LA  - en
ID  - IM2_1991_36_2_a6
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%A A. A. Suslin
%T The norm residue homomorphism of degree~three
%J Izvestiya. Mathematics 
%D 1991
%P 349-367
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a6/
%G en
%F IM2_1991_36_2_a6
A. S. Merkur'ev; A. A. Suslin. The norm residue homomorphism of degree~three. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 349-367. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a6/