A~theorem on two commuting automorphisms, and integrable differential equations
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 263-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

Constructions are found for differential equations in an arbitrary continuous associative algebra $\mathfrak A$ that admit an equivalent Lax representation (with spectral parameter) in the space of linear operators acting on $\mathfrak A$. The constructions use commuting automorphisms of $\mathfrak A$. Applications of the main construction are indicated for the construction of integrable Euler equations in the direct sum of the Lie algebras $\operatorname{gl}(n,R)$ and $\operatorname{so}(n,R)$. Constructions are presented for matrix differential equations admitting a Lax representation with several spectral parameters.
@article{IM2_1991_36_2_a2,
     author = {O. I. Bogoyavlenskii},
     title = {A~theorem on two commuting automorphisms, and integrable differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {263--279},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - A~theorem on two commuting automorphisms, and integrable differential equations
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 263
EP  - 279
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/
LA  - en
ID  - IM2_1991_36_2_a2
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T A~theorem on two commuting automorphisms, and integrable differential equations
%J Izvestiya. Mathematics 
%D 1991
%P 263-279
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/
%G en
%F IM2_1991_36_2_a2
O. I. Bogoyavlenskii. A~theorem on two commuting automorphisms, and integrable differential equations. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 263-279. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/

[1] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 736–766 | MR

[2] Bogoyavlenskii O. I., “Integriruemye dinamicheskie sistemy, svyazannye s uravneniem KdV”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1123–1141 | MR | Zbl

[3] Bogoyavlensky O. I., “Integrable discretizations of the KdV equation”, Physics Letters A., 134:1 (1988), 34–38 | DOI | MR

[4] Bogoyavlenskii O. I., “Algebraicheskie konstruktsii nekotorykh integriruemykh uravnenii”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 712–739 | MR

[5] Itoh Y., “Integrals of a Lottka–Volterra system of odd number of variables”, Progr. Theor. Phys., 78:3 (1987), 507–510 | DOI | MR

[6] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl

[7] Perelomov A. M., Ragnisco O., Wojciechowski S., “Integrability of Two Interacting $N$-Dimensional Rigid Bodies”, Comm. Math. Phys., 102 (1986), 573–583 | DOI | MR | Zbl

[8] Jiang Z., Wojciechowski S., “Integrable System of Many Interacting Rigid Bodies”, Nuovo Cimento, 101B:4 (1988), 415–427 | MR

[9] Dubrovin B. A., “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego prilozh., 11:4 (1977), 28–41 | MR | Zbl

[10] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR Ser. matem., 48:5 (1984), 883–938 | MR

[11] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony v novykh dvumernykh integriruemykh uravneniyakh”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 243–257 | MR