A~theorem on two commuting automorphisms, and integrable differential equations
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 263-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Constructions are found for differential equations in an arbitrary continuous associative algebra $\mathfrak A$ that admit an equivalent Lax representation (with spectral parameter) in the space of linear operators acting on $\mathfrak A$. The constructions use commuting automorphisms of $\mathfrak A$. Applications of the main construction are indicated for the construction of integrable Euler equations in the direct sum of the Lie algebras $\operatorname{gl}(n,R)$ and $\operatorname{so}(n,R)$. Constructions are presented for matrix differential equations admitting a Lax representation with several spectral parameters.
@article{IM2_1991_36_2_a2,
     author = {O. I. Bogoyavlenskii},
     title = {A~theorem on two commuting automorphisms, and integrable differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {263--279},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - A~theorem on two commuting automorphisms, and integrable differential equations
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 263
EP  - 279
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/
LA  - en
ID  - IM2_1991_36_2_a2
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T A~theorem on two commuting automorphisms, and integrable differential equations
%J Izvestiya. Mathematics 
%D 1991
%P 263-279
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/
%G en
%F IM2_1991_36_2_a2
O. I. Bogoyavlenskii. A~theorem on two commuting automorphisms, and integrable differential equations. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 263-279. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a2/