Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1991_36_2_a0, author = {I. V. Artamkin}, title = {Stable bundles with $c_1=0$ on rational surfaces}, journal = {Izvestiya. Mathematics }, pages = {231--246}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {1991}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a0/} }
I. V. Artamkin. Stable bundles with $c_1=0$ on rational surfaces. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a0/
[1] Barth W., “Moduli of vector bandies on the projective plane”, Invent. Math., 42 (1977), 63–91 | DOI | MR | Zbl
[2] Barth W., Hulek K., “Monads and moduli of vector bundles”, Manuscripta Math., 25 (1978), 323–347 | DOI | MR | Zbl
[3] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl
[4] Maruyama M., “Moduli of stable sheaves, I”, J. Math. Kyoto Univ., 17 (1977), 91–126 | MR | Zbl
[5] Maruyama M., “Openness of a family of torsion – free sheaves”, J. Math. Kyoto Univ., 16 (1976), 627–637 | MR | Zbl
[6] Okonek C., Schneider H., Spindler H., Vector bundles on complex projective spaces, Birkhauser, 1980 | MR
[7] Hulek K., “On the classification of stable rank-$r$ vector bundles over the projective planed”, Vector Bundles and Differential Equations (Proceedings of the Nice Conference, 1979), Progress in Mathematics, 7, Birkhäuser, Boston, Mass., 1980, 113–144 | MR
[8] Schwarzenberger R. L. E., “Vector bundles on algebraic surfaces, III”, Proc. London Math. Soc., 11:44 (1961), 601–622 | DOI | MR | Zbl
[9] Khodzh V., Pido D., Metody algebraicheskoi geometrii, II, IL, M., 1954