Stable bundles with $c_1=0$ on rational surfaces
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 231-246

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary rational surface $X$the author proves the existence of a nonempty component of the moduli variety $M^0(X,n,r)$ of rank $r$ bundles with $c_1=0$ and $c_2=n\geqslant r$ in which the $\mathscr L$-stable bundles constitute a nonempty open subset for any ample $\mathscr L$. Moreover, any birational isomorphism $\varphi\colon X\to Y$ of surfaces gives rise to a birational isomorphism $\varphi_*\colon M^0(X)\to M^0(Y)$.
@article{IM2_1991_36_2_a0,
     author = {I. V. Artamkin},
     title = {Stable bundles with $c_1=0$ on rational surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {231--246},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a0/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Stable bundles with $c_1=0$ on rational surfaces
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 231
EP  - 246
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a0/
LA  - en
ID  - IM2_1991_36_2_a0
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Stable bundles with $c_1=0$ on rational surfaces
%J Izvestiya. Mathematics 
%D 1991
%P 231-246
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a0/
%G en
%F IM2_1991_36_2_a0
I. V. Artamkin. Stable bundles with $c_1=0$ on rational surfaces. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a0/