Commuting differential operators of rank~3, and nonlinear differential equations
Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 629-655

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete solutions of the commutation equations of ordinary differential operators are obtained, to which there corresponds a three-dimensional vector bundle of common eigenfunctions over an elliptic curve. The deformation of the commuting pair by the Kadomtsev–Petviashvili equation is studied. The finite-zone solutions of the Kadomtsev–Petviashvili equation of rank 3 and genus 1 are explicitly expressed in terms of functional parameters satisfying a Boussinesq-type system of two evolution equations. Bibliography: 40 titles.
@article{IM2_1990_35_3_a5,
     author = {O. I. Mokhov},
     title = {Commuting differential operators of rank~3, and nonlinear differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {629--655},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a5/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Commuting differential operators of rank~3, and nonlinear differential equations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 629
EP  - 655
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a5/
LA  - en
ID  - IM2_1990_35_3_a5
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Commuting differential operators of rank~3, and nonlinear differential equations
%J Izvestiya. Mathematics 
%D 1990
%P 629-655
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a5/
%G en
%F IM2_1990_35_3_a5
O. I. Mokhov. Commuting differential operators of rank~3, and nonlinear differential equations. Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 629-655. http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a5/