The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 457-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that if $\Gamma_1$, and $\Gamma_2$ are strictly pseudoconvex hypersurfaces in $\mathbf C^n$ of class $C^m$ for ($m>2$) and if $F\colon\Gamma_1\to\Gamma_2$ is a continuous nonconstant $\operatorname{CR}$-mapping, then $F$ is a local diffeomorphism of class $C^{m-1-0}$. Bibliography: 16 titles.
@article{IM2_1990_35_2_a8,
     author = {S. I. Pinchuk and Sh. I. Tsyganov},
     title = {The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {457--467},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/}
}
TY  - JOUR
AU  - S. I. Pinchuk
AU  - Sh. I. Tsyganov
TI  - The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 457
EP  - 467
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/
LA  - en
ID  - IM2_1990_35_2_a8
ER  - 
%0 Journal Article
%A S. I. Pinchuk
%A Sh. I. Tsyganov
%T The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces
%J Izvestiya. Mathematics 
%D 1990
%P 457-467
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/
%G en
%F IM2_1990_35_2_a8
S. I. Pinchuk; Sh. I. Tsyganov. The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 457-467. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/

[1] Khenkin G. M., “Analiticheskii poliedr golomorfno neekvivalenten strogo psevdovypukloi oblasti”, Dokl. AN SSSR, 210:5 (1973), 1026–1029 | Zbl

[2] Pinchuk S. I., “O sobstvennykh golomorfnykh otobrazheniyakh strogo psevdovypuklykh oblastei”, Sib. matem. zhurn., 15:4 (1974), 909–917 | MR | Zbl

[3] Fefferman C., “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math., 26:1 (1974), 1–65 | DOI | MR | Zbl

[4] Bell S., Ligocka E., “A simplification and extension of Fefferman's Theorem on biholomorphic mappings”, Invent. Math., 57:3 (1980), 283–289 | DOI | MR | Zbl

[5] Nirenberg L., Webster S., Yang P., “Local boundary regularity of holomorphic mappings”, Comm. Pure and Appl. Math., 33:3 (1980), 305–338 | DOI | MR | Zbl

[6] Lempert L., “A precise result on the boundary regularity of biholomorphic mappings”, Math. Z., 193:4 (1986), 559–579 | DOI | MR | Zbl

[7] Pinchuk S. I., Khasanov S. V., “Asimptoticheski golomorfnye funktsii i ikh primeneniya”, Matem. sb., 134:4 (1987), 546–555 | MR | Zbl

[8] Aleksandrov A. B., “Suschestvovanie vnutrennikh funktsii v share”, Matem. sb., 118:2 (1982), 147–163 | MR | Zbl

[9] Pinchuk S. I., “Sobstvennye golomorfnye otobrazheniya strogo psevdovypuklykh oblastei”, Dokl. AN SSSR, 241:1 (1978), 30–33 | MR | Zbl

[10] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971 | MR

[11] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 4, VINITI AN SSSR, 1975, 13–11

[12] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[13] Grauert H., Remmert R., “Plurisubharmonische Funktionen in Komplexen Raumen”, Math. Z., 65:2 (1956), 175–194 | DOI | MR | Zbl

[14] Sadullaev A., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[15] Alexander H., “Holomorphic mappings from the ball and polydisc”, Math. Ann., 209:3 (1974), 249–256 | DOI | MR | Zbl

[16] Bokhner S., Martin U., Funktsii mnogikh kompleksnykh peremennykh, IL, M., 1951