The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 457-467

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that if $\Gamma_1$, and $\Gamma_2$ are strictly pseudoconvex hypersurfaces in $\mathbf C^n$ of class $C^m$ for ($m>2$) and if $F\colon\Gamma_1\to\Gamma_2$ is a continuous nonconstant $\operatorname{CR}$-mapping, then $F$ is a local diffeomorphism of class $C^{m-1-0}$. Bibliography: 16 titles.
@article{IM2_1990_35_2_a8,
     author = {S. I. Pinchuk and Sh. I. Tsyganov},
     title = {The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {457--467},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/}
}
TY  - JOUR
AU  - S. I. Pinchuk
AU  - Sh. I. Tsyganov
TI  - The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 457
EP  - 467
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/
LA  - en
ID  - IM2_1990_35_2_a8
ER  - 
%0 Journal Article
%A S. I. Pinchuk
%A Sh. I. Tsyganov
%T The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces
%J Izvestiya. Mathematics 
%D 1990
%P 457-467
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/
%G en
%F IM2_1990_35_2_a8
S. I. Pinchuk; Sh. I. Tsyganov. The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 457-467. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a8/