Distance-transitive graphs admitting elations
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 307-335

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $\Gamma$ is called distance-transitive if, for every quadruple $x,y,u,v$ of its vertices such that $d(x,y)=d(u,v)$, there is an automorphism in the group $\operatorname{Aut}(\Gamma)$ which maps $x$ to $u$ and $y$ to $v$. The graph $\Gamma$ is called $s$-transitive if $\operatorname{Aut}(\Gamma)$ acts transitively on the set of paths of length $s$ but intransitively on the set of paths of length $s+1$ in the graph $\Gamma$. A nonunit automorphism a $\operatorname{Aut}(\Gamma)$ is called an elation if for some edge $\{x,y\}$ it fixes elementwise all the vertices adjacent to either $x$ or $y$. In this paper a complete description of distance-transitive graphs which are $s$-transitive for $s\geqslant2$ and whose automorphism groups contain elations is obtained. Bibliography: 30 titles.
@article{IM2_1990_35_2_a2,
     author = {A. A. Ivanov},
     title = {Distance-transitive graphs admitting elations},
     journal = {Izvestiya. Mathematics },
     pages = {307--335},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/}
}
TY  - JOUR
AU  - A. A. Ivanov
TI  - Distance-transitive graphs admitting elations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 307
EP  - 335
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/
LA  - en
ID  - IM2_1990_35_2_a2
ER  - 
%0 Journal Article
%A A. A. Ivanov
%T Distance-transitive graphs admitting elations
%J Izvestiya. Mathematics 
%D 1990
%P 307-335
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/
%G en
%F IM2_1990_35_2_a2
A. A. Ivanov. Distance-transitive graphs admitting elations. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 307-335. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/