Distance-transitive graphs admitting elations
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 307-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $\Gamma$ is called distance-transitive if, for every quadruple $x,y,u,v$ of its vertices such that $d(x,y)=d(u,v)$, there is an automorphism in the group $\operatorname{Aut}(\Gamma)$ which maps $x$ to $u$ and $y$ to $v$. The graph $\Gamma$ is called $s$-transitive if $\operatorname{Aut}(\Gamma)$ acts transitively on the set of paths of length $s$ but intransitively on the set of paths of length $s+1$ in the graph $\Gamma$. A nonunit automorphism a $\operatorname{Aut}(\Gamma)$ is called an elation if for some edge $\{x,y\}$ it fixes elementwise all the vertices adjacent to either $x$ or $y$. In this paper a complete description of distance-transitive graphs which are $s$-transitive for $s\geqslant2$ and whose automorphism groups contain elations is obtained. Bibliography: 30 titles.
@article{IM2_1990_35_2_a2,
     author = {A. A. Ivanov},
     title = {Distance-transitive graphs admitting elations},
     journal = {Izvestiya. Mathematics },
     pages = {307--335},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/}
}
TY  - JOUR
AU  - A. A. Ivanov
TI  - Distance-transitive graphs admitting elations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 307
EP  - 335
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/
LA  - en
ID  - IM2_1990_35_2_a2
ER  - 
%0 Journal Article
%A A. A. Ivanov
%T Distance-transitive graphs admitting elations
%J Izvestiya. Mathematics 
%D 1990
%P 307-335
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/
%G en
%F IM2_1990_35_2_a2
A. A. Ivanov. Distance-transitive graphs admitting elations. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 307-335. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a2/

[1] Weiss R., “Elations of graphs”, Acta Math. Sci. Hungar, 34 (1979), 101–103 | DOI | MR | Zbl

[2] Bannai E., Ito T., Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987 | MR

[3] Brouwer A. E., Cohen A. M., Neumaier A., Distance Regular Graphs, Springer-Verlag, 1989 | MR

[4] Weiss R., “$s$-Transitive graphs”, Algebraic Methods in Graph Theory, v. 2, North Holland Publ. Co., Amsterdam, 1981, 827–847 | MR

[5] Ivanov A. A., “Grafy obkhvata $6$ i kharakterizatsiya nechetnykh grafov”, Voprosy teorii grupp i gomologicheskoi algebry, YaGU, Yaroslavl, 1987, 92–107

[6] Ivanov A. A., “Grafy malogo obkhvata i distantsionno-tranzitivnye grafy”, Metody issledovaniya slozhnykh sistem, 1986, 13–19, VNIISI, M.

[7] Ivanov A. A., “On $2$-transitive graphs of girth $5$”, Europ. J. Comb., 8 (1987), 393–420 | MR | Zbl

[8] Weiss R., “Uber symmetrische Gruppen und die projectiven Gruppen”, Arch. Math., 28 (1977), 110–112 | DOI | MR

[9] Weiss R., “Groups with a $(B,N)$-pair and locally transitive graphs”, Nagoya Math. J., 74 (1979), 1–21 | MR | Zbl

[10] Weiss R., “The nonexistence of $8$-transitive graphs”, Combinatorica, 1 (1981), 309–311 | DOI | MR | Zbl

[11] Weiss R., “Distance-transitive graphs and generalized polygons”, Arch. Math., 45 (1985), 186–192 | DOI | MR | Zbl

[12] Ivanov A. A., Ivanov A. V., Faradzhev I. A., “Distantsionno-tranzitivnye grafy stepeni 5, 6 i 7”, ZhVM i MF, 24 (1984), 1704–1718 | MR | Zbl

[13] Brouwer A. E., “Uniqueness and nonexistence of some graphs related to $M_{22}$”, Graphs and Combinatorics, 2 (1986), 21–29 | DOI | MR | Zbl

[14] Cameron P. J., Praeger C. E., “Graphs and permutation groups with projective subconstituents”, J. London Math. Soc., 25 (1982), 62–74 | DOI | MR | Zbl

[15] Ivanov A. A., “Graphs of girth $5$ and diagram geometries related to the Petersen graph”, International Conf. on Finite Geometries and Combinatorics, Gent, 1986, 55–57 | Zbl

[16] Ivanov A. A., “Grafy obkhvata $5$ i diagrammnye geometrii, svyazannye s grafom Petersena”, Dokl. AN SSSR, 295:3 (1987), 529–533 | MR | Zbl

[17] Tits J., “A local approach to buildings”, The Geometric Vein, Springer, 1981, 519–547 | MR

[18] Tits J., “Buildings of Spherical Type and Finite $BN$-pairs”, Lecture Notes Math., 386, Springer, 1974 | MR | Zbl

[19] Timmesfeld F., “Tits's geometries and parabolic systems in finite groups”, Math. Z., 184 (1983), 377–396 | DOI | MR | Zbl

[20] Shpektorov S. V., “Geometricheskaya kharakterizatsiya gruppy $M_{22}$”, Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov, VNIISI, M., 1985, 112–123 | MR

[21] Ivanov A. A., Kombinatorno-algebraicheskie metody issledovaniya distantsionno-regulyarnykh grafov, Dis. $\dots$ kand. fiz.-matem. nauk, MFTI, M., 1984

[22] Ivanov A. A., Chuvaeva I. V., “Metod nepodvizhnykh tochek v zadache klassifikatsii distantsionno-tranzitivnykh grafov”, Metody issledovaniya slozhnykh sistem, VNIISI, M., 1985, 3–10 | MR

[23] Ivanov A. A., Shpectorov S. V., “Geometries for sporadic groups related to the Petersen graph, I”, Comm. Algebra, 16:5 (1988), 925–954 | DOI | MR

[24] Ivanov A. A., Shpectorov S. V., “Geometries for sporadic groups related to the Petersen graph, II”, Europ. J. Comb., 10 (1989) | MR

[25] Gardiner A., “Imprimitive distance-regular graphs and projective planes”, J. Combin. Theory (B), 16 (1974), 274–281 | DOI | MR | Zbl

[26] Weiss R., “Symmetric graphs with projective subconstituents”, Proc. Amer. Math. Soc., 72 (1978), 312–317 | DOI | MR

[27] Weiss R., “Graphs with subconstituents containing $L_3(q)$”, Proc. Amer. Math. Soc., 85 (1982), 666–672 | DOI | MR | Zbl

[28] Kantor W. M., “Generalized polygons, SCABs and GABs”, Lecture Notes Math., no. 1181, 1986, 79–158 | MR | Zbl

[29] Stroth G., Weiss R., “Modified Steinberg relations for the group $J_4$”, Geom. dedic., 25 (1988), 513–525 | MR | Zbl

[30] Kantor W. M., “Note on symmetric designs and projective spaces”, Math. Z., 122 (1971), 61–62 | DOI | MR | Zbl