Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 277-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the goals in this article is to extend the umbral calculus to sequences of superpolynomials. A study is made of the group of formal diffeomorphisms of the superline and its main subgroups (the umbral group, the group of formal diffeomorphisms of the line). A complete description of the one-parameter subgroups is obtained, and a faithful supermatrix representation of this group is constructed. Homogeneous coalgebras on the line and superline are studied. The class of nondegenerate homogeneous coalgebras on the line is completely described. Functional equations that are connected with these coalgebras and generalize the classical functional equations of Cauchy, Pexider, Abel, Levi–Civita, and Stäkel are introduced and solved. Bibliography: 30 titles.
@article{IM2_1990_35_2_a1,
     author = {V. M. Buchstaber and A. N. Kholodov},
     title = {Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations},
     journal = {Izvestiya. Mathematics },
     pages = {277--305},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. N. Kholodov
TI  - Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 277
EP  - 305
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a1/
LA  - en
ID  - IM2_1990_35_2_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. N. Kholodov
%T Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations
%J Izvestiya. Mathematics 
%D 1990
%P 277-305
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a1/
%G en
%F IM2_1990_35_2_a1
V. M. Buchstaber; A. N. Kholodov. Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 277-305. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a1/

[1] Berezin F. A., Kats G. I., “Gruppy Li s kommutiruyuschimi i antikommutiruyuschimi parametrami”, Matem. sb., 82 (1970), 349–359 | MR

[2] Boas R. P., Buck R. C., Polynomial expansion of analytic functions, Springer, Berlin, 1958 | MR | Zbl

[3] Bukhshtaber V. M., “Dvuznachnye formalnye gruppy. Algebraicheskaya teoriya i prilozheniya k kobordizmam, 1”, Izv. AN SSSR. Ser. matem., 39 (1975), 1044–1064 | Zbl

[4] Bukhshtaber V. M., “Algebra Stinroda – obertyvayuschaya algebra supergruppy $p$-adicheskikh diffeomorfizmov pryamoi”, Dop. k kn.: Stinrod N., Epstein D., Kogomologicheskie operatsii, Nauka, M., 1983 | MR

[5] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84(126) (1971), 81–118 | Zbl

[6] Bukhshtaber V. M., Shokurov A. V., “Algebra Landvebera–Novikova i formalnye vektornye polya na pryamoi”, Funkts. analiz, 12:3 (1978), 1–11 | MR | Zbl

[7] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1974

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 3, Nauka, M., 1977

[10] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[11] Leites D. A., “Vvedenie v teoriyu supermnogoobrazii”, UMN, 35:1 (1980), 3–57 | MR | Zbl

[12] Mullin R., Rota G.-C., “On the foundations of combinatorial theory. III: Theory of binomial enumerations”, Graph theory and its applications, Acad. Press, N.Y., 1970, 167–213 | MR

[13] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl

[14] Roman S., “The theory of the umbral calculus, I”, J. Math. Anal. Appl., 87 (1982), 58–115 | DOI | MR | Zbl

[15] Roman S., The umbral calculus, Acad. Press, N.Y., 1984 | MR

[16] Roman S., Rota G.-C., “The umbral calculus”, Adv. Math., 27 (1978), 95–188 | DOI | MR | Zbl

[17] Rota G.-C., Kahaner D., Odlyzko A., “On the foundations of combinatorial theory. VIII: Finite operator calculus”, J. Math. Anal. Appl., 42 (1973), 685–760 | DOI | MR

[18] Rota G.-C., Finite operator calculus, Acad. Press, N.Y., 1975 | MR | Zbl

[19] Kholodov A. N., “Algebraicheskaya teoriya mnogoznachnykh formalnykh grupp”, Matem. sb., 114(156) (1981), 299–321 | MR | Zbl

[20] Khelgason S., Preobrazovanie Radona, Mir, M., 1983 | MR | Zbl

[21] Shvarts A. S., “K opredeleniyu superprostranstva”, TMF, 60 (1984), 37–42 | MR | Zbl

[22] Sheffer I. M., “Some properties of polinomial sets of type zero”, Duke Math. J., 5 (1939), 590–622 | DOI | MR | Zbl

[23] Rainville D. E., Special functions, Macmilan Co., N.Y., 1960 | Zbl

[24] Aczel J., Lectures on functional equations and their applications, Acad. Press, N.Y., 1966 | MR | Zbl

[25] Kholodov A. N., “Tenevoi analiz na mnogoznachnykh formalnykh gruppakh i proektory Adamsa v $K$-teorii”, Matem. sb., 137 (1988), 417–431 | Zbl

[26] Ueno K., “The umbral calculus and special functions”, Adv. Math., 67 (1988), 174–230 | DOI | MR

[27] Jabotinsky E., “Analytic iteration”, Trans. AMS, 108 (1963), 457–477 | DOI | MR | Zbl

[28] Viskov O. V., “Operatornaya kharakterizatsiya obobschennykh polinomov Appelya”, Dokl. AN SSSR, 225 (1975), 749–752 | MR | Zbl

[29] Vladimirov V. S., Volovich I. V., “Superanaliz. I: Differentsialnoe ischislenie”, TMF, 59 (1984), 3–27 | MR | Zbl

[30] Reich L., “On a differential equations in iteration theory in rings of formal power series in one variables”, Lect. Notes Math., 1163, 1985, 133–148