Generalization of a~theorem of Men'shov on monogenic functions
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 221-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that in Men'shov's theorem on the holomorphicity of continuous functions monogenic at each point of a domain with respect to two intervals intersecting at this point the condition of continuity of $f(z)$ may be replaced by the condition of summability of $(\log^+|f(z)|)^p$ for all positive $p2$. As a collateral result a theorem of Phragmén–Lindelöf type is proved in which a certain summability condition is imposed in place of a condition on the growth of the function. Bibliography: 17 titles.
@article{IM2_1990_35_1_a10,
     author = {D. S. Telyakovskii},
     title = {Generalization of a~theorem of {Men'shov} on monogenic functions},
     journal = {Izvestiya. Mathematics },
     pages = {221--231},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a10/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
TI  - Generalization of a~theorem of Men'shov on monogenic functions
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 221
EP  - 231
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a10/
LA  - en
ID  - IM2_1990_35_1_a10
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%T Generalization of a~theorem of Men'shov on monogenic functions
%J Izvestiya. Mathematics 
%D 1990
%P 221-231
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a10/
%G en
%F IM2_1990_35_1_a10
D. S. Telyakovskii. Generalization of a~theorem of Men'shov on monogenic functions. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 221-231. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a10/

[1] Looman H., “Ueber die Cauchy–Riemannschen Differentialgleichungen”, Nachr. Ges. Wiss. Göttingen, 1923, 97–108 | Zbl

[2] Saks S., Theorie de l'integrale, Monografie Mathematyczne, II, Warszawa, 1933 | Zbl

[3] Menchoff D., “Les conditions de monogénéite”, Act. Sc. et Ind. Paris, 1936

[4] Menchoff D., “Sur la généralisation des conditions de Cauchy–Riemann”, Fund. Math., 25 (1935), 59–97 | Zbl

[5] Menshov D. E., “Ob asimptoticheskoi monogennosti”, Matem. sb., 1(43) (1936), 189–210

[6] Tolstoff G., “Sur les fonctions bornées vérifiant les conditions de Cauchy–Rieman”, Matem. sb., 10(52) (1942), 79–86 | MR

[7] Tolstov G. P., O krivolineinom i povtornom integrale, Tr. MIAN, 35, 1950 | MR | Zbl

[8] Cohen P. J., “On Green's Theorem”, Proc. Amer. Math. Soc., 10 (1959), 109–112 | DOI | MR | Zbl

[9] Fesq R. M., “Green's Formula, Linear Continuity and Hausdorff Measure”, Trans. Amer. Math. Soc., 118 (1965), 105–112 | DOI | MR | Zbl

[10] Sindalovskii G. X., “Ob analitichnosti funktsii iz klassa $L_1$ udovletvoryayuschikh usloviyam Koshi–Rimana”, Dokl. AN SSSR, 276 (1984), 303–305 | MR | Zbl

[11] Sindalovskii G. X., “Ob usloviyakh Koshi–Rimana v klasse funktsii s summiruemym modulem i nekotorykh granichnykh svoistvakh analiticheskikh funktsii”, Matem. sb., 128(170):3(11) (1985), 364–382 | MR | Zbl

[12] Telyakovskii D. S., “Ob odnom obobschenii teoremy Lumana–Menshova”, Matem. zametki., 39:4 (1986), 539–549 | MR | Zbl

[13] Mittag-Leffler G., “Sur la representation analytique d'une branche uniforme d'une fonction monogeme (cinquieme note)”, Acta Math., 29 (1905), 101–181 | DOI | MR

[14] Tolstov G. P., “Ob ogranichennykh funktsiyakh, udovletvoryayuschikh uravneniyu Laplasa”, Matem. sb., 29(71) (1951), 551–558 | MR

[15] Privalov I. I., Subgarmonicheskie funktsii, GONTI, M., L., 1937

[16] Saks S., Teoriya integrala, IL., M., 1949

[17] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR