On projective simplicity of certain groups of rational points over algebraic number fields
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 409-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, if $G$ is a simply connected anisotropic absolutely simple algebraic group with rank $n\geqslant2$ defined over an algebraic number field and decomposable over a quadratic extension, then the group $G(K)$ of rational points is projectively simple, i.e. the factor group modulo the center is simple. Projective simplicity of algebraic groups of type $B_n$, $C_n$, $G_2$, $F_4$, $F_7$ is obtained as a corollary, and also the same for groups of type $E_8$ whenever the Hasse principle holds. In addition the problem of projective simplicity for groups of type $^{(1)}D_n$, $^{(2)}D_n$ ($n\geqslant4$) is reduced to the case of groups of type $A_3$. Bibliography: 18 titles.
@article{IM2_1990_34_2_a9,
     author = {V. I. Chernousov},
     title = {On projective simplicity of certain groups of rational points over algebraic number fields},
     journal = {Izvestiya. Mathematics },
     pages = {409--423},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/}
}
TY  - JOUR
AU  - V. I. Chernousov
TI  - On projective simplicity of certain groups of rational points over algebraic number fields
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 409
EP  - 423
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/
LA  - en
ID  - IM2_1990_34_2_a9
ER  - 
%0 Journal Article
%A V. I. Chernousov
%T On projective simplicity of certain groups of rational points over algebraic number fields
%J Izvestiya. Mathematics 
%D 1990
%P 409-423
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/
%G en
%F IM2_1990_34_2_a9
V. I. Chernousov. On projective simplicity of certain groups of rational points over algebraic number fields. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 409-423. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/

[1] Platonov V. P., “Arifmeticheskie i strukturnye problemy v lineinykh algebraicheskikh gruppakh”, Proc. Intern. Congr. Math., v. 1 (Vancouver), 1974, 471–476 | MR

[2] Kneser M., “Orthogonale Gruppen über algebraischen Zahlkorpern”, J. Reine und Angew. Math., 196:3,4 (1956), 213–220 | MR | Zbl

[3] Platonov V. P., Rapinchuk A. S., “O gruppe ratsionalnykh tochek trekhmernykh grupp”, Dokl. AN SSSR, 247:2 (1979), 279–282 | MR | Zbl

[4] Margulis G. A., “O multiplikativnoi gruppe algebry kvaternionov nad globalnym polem”, Dokl. AN SSSR, 252:3 (1980), 542–546 | MR | Zbl

[5] Platonov V. P., Rapinchuk A. S., “Multiplikativnaya struktura tel nad chislovymi polyami i normennyi printsip Khasse”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 171–187 | MR | Zbl

[6] Raghunathan M. S., On the group of norm 1 elements in a division algebra, Preprint IHES/M/84/15 | MR

[7] Borovoi M. V., “Abstraktnaya prostota nekotorykh prostykh anizotropnykh algebraicheskikh grupp nad chislovymi polyami”, Dokl. AN SSSR, 283:4 (1985), 794–797 | MR | Zbl

[8] Platonov V. P., Chernousov V. I., “O ratsionalnosti kanonicheskikh spinornykh mnogoobrazii”, Dokl. AN SSSR, 252:4 (1980), 796–800 | MR | Zbl

[9] Chernousov V. I., “O ratsionalnosti spinornykh mnogoobrazii nad polem ratsionalnykh chisel”, Dokl. AN BSSR, 25:4 (1981), 293–296 | MR | Zbl

[10] Chernousov V. I., “O ratsionalnosti gruppovykh kompaktnykh mnogoobrazii klassicheskogo tipa”, Dokl. AN BSSR, 27 (1983), 1061–1064 | MR | Zbl

[11] Chernousov V. I., Biratsionalnye svoistva klassicheskikh gruppovykh mnogoobrazii, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, Minsk, 1983 | Zbl

[12] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp. | MR | Zbl

[13] Margulis G. A., “Konechnost faktorgrupp diskretnykh podgrupp”, Funkts. analiz i ego prilozh., 13:3 (1979), 28–39 | MR | Zbl

[14] Burbaki N., Gruppy i algebry Li, Gl. VII–VIII, Mir, M., 1978, 342 pp. | MR

[15] Tits Zh., “Klassifikatsiya poluprostykh algebraicheskikh grupp”, Matematika, 12:2 (1968), 110–143

[16] Seip-Hornix E. A. M., “Clifford algebras of quadratic quaternian forms, I”, Indag. Math., 27:2 (1965), 326–344 | MR

[17] Seip-Hornix E. A. M., “Clifford algebras of quadratic quaternian forms, II”, Indag. Math., 27:2 (1965), 345–363 | MR

[18] Scharlau W., Quadratic and hermitian forms, Berlin, 1985, 421 pp. | MR