On projective simplicity of certain groups of rational points over algebraic number fields
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 409-423

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, if $G$ is a simply connected anisotropic absolutely simple algebraic group with rank $n\geqslant2$ defined over an algebraic number field and decomposable over a quadratic extension, then the group $G(K)$ of rational points is projectively simple, i.e. the factor group modulo the center is simple. Projective simplicity of algebraic groups of type $B_n$, $C_n$, $G_2$, $F_4$, $F_7$ is obtained as a corollary, and also the same for groups of type $E_8$ whenever the Hasse principle holds. In addition the problem of projective simplicity for groups of type $^{(1)}D_n$, $^{(2)}D_n$ ($n\geqslant4$) is reduced to the case of groups of type $A_3$. Bibliography: 18 titles.
@article{IM2_1990_34_2_a9,
     author = {V. I. Chernousov},
     title = {On projective simplicity of certain groups of rational points over algebraic number fields},
     journal = {Izvestiya. Mathematics },
     pages = {409--423},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/}
}
TY  - JOUR
AU  - V. I. Chernousov
TI  - On projective simplicity of certain groups of rational points over algebraic number fields
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 409
EP  - 423
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/
LA  - en
ID  - IM2_1990_34_2_a9
ER  - 
%0 Journal Article
%A V. I. Chernousov
%T On projective simplicity of certain groups of rational points over algebraic number fields
%J Izvestiya. Mathematics 
%D 1990
%P 409-423
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/
%G en
%F IM2_1990_34_2_a9
V. I. Chernousov. On projective simplicity of certain groups of rational points over algebraic number fields. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 409-423. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a9/