An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 373-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete invariants of exceptional bundles on a $\mathrm K3$ surface $S$ obey the equation $c_1^2-2r(r-c_2+c_1^2/2)=-2$. In this paper it is proved that if the triple $(r,c_1,c_2)\in\mathbf Z\times\operatorname{Pic}(S)\times\mathbf Z$ satisfies this equation, then there exists an exceptional bundle $E$ on $S$ for which $r(E)=r$, $c_1(E)=c_1$ and $c_2(E)=c_2$ (modulo numerical equivalence). In addition, methods of constructing exceptional bundles on a $\mathrm K3$ surface are indicated. Bibliography: 10 titles.
@article{IM2_1990_34_2_a7,
     author = {S. A. Kuleshov},
     title = {An existence theorem for exceptional bundles on $\mathrm K3$ surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {373--388},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/}
}
TY  - JOUR
AU  - S. A. Kuleshov
TI  - An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 373
EP  - 388
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/
LA  - en
ID  - IM2_1990_34_2_a7
ER  - 
%0 Journal Article
%A S. A. Kuleshov
%T An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
%J Izvestiya. Mathematics 
%D 1990
%P 373-388
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/
%G en
%F IM2_1990_34_2_a7
S. A. Kuleshov. An existence theorem for exceptional bundles on $\mathrm K3$ surfaces. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 373-388. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/

[1] Altman A., Kleiman S., “Compactifying the Picard scheme”, Adv. in Math., 35 (1980), 50–112 | DOI | MR | Zbl

[2] Gorodentsev A. L., Rudakov A. N., “Exceptional vektor bundles on projectiv spaces”, Duke Math. J., 54:1, 115–130 | DOI | MR | Zbl

[3] Kuleshov S. A., “Isklyuchitelnye rassloeniya na poverkhnosti K3”, Algebraicheskaya geometriya, Yarosl. ped. in-t, Yaroslavl, 1988, 124–137, Dep. v VINITI 9.09.88, No 6418-V-88

[4] Kuleshov S. A., “Svoistva isklyuchitelnykh rassloenii na K3-poverkhnostyakh”, Algebraicheskaya geometriya, Yarosl. ped. in-t, Yaroslavl, 1988, 137–164, Dep. v VINITI 9.09.88, No 6418-V-88

[5] Maruyama M., “Moduli of stable sheaves, II”, J. Math. Kyoto Univ., 18 (1978), 557–614 | MR | Zbl

[6] Mukai S., “On the moduli space of bundles on K3 surfaces, I”, Vektor Bundles on Algebraic Varieties (Bombay Colloguium 1984), Oxford Univ. Press, 1987 | MR

[7] Mukai S., “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[8] Pyatetskii-Shapiro I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–572

[9] Rudakov A. N., “Isklyuchitelnye nabory, perestroiki i spirali”, Algebraicheskaya geometriya, Yarosl. ped. in-t, Yaroslavl, 1988, 1–11, Dep. v VINITI 9.09.88, No 6418-V-88 | MR

[10] Rudakov A. N., “Isklyuchitelnye rassloeniya na kvadrike”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 788–812 | Zbl