An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 373-388
Voir la notice de l'article provenant de la source Math-Net.Ru
Discrete invariants of exceptional bundles on a $\mathrm K3$ surface $S$ obey the equation $c_1^2-2r(r-c_2+c_1^2/2)=-2$. In this paper it is proved that if the triple $(r,c_1,c_2)\in\mathbf Z\times\operatorname{Pic}(S)\times\mathbf Z$ satisfies this equation, then there exists an exceptional bundle $E$ on $S$ for which $r(E)=r$, $c_1(E)=c_1$ and $c_2(E)=c_2$ (modulo numerical equivalence). In addition, methods of constructing exceptional bundles on a $\mathrm K3$ surface are indicated.
Bibliography: 10 titles.
@article{IM2_1990_34_2_a7,
author = {S. A. Kuleshov},
title = {An existence theorem for exceptional bundles on $\mathrm K3$ surfaces},
journal = {Izvestiya. Mathematics },
pages = {373--388},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/}
}
S. A. Kuleshov. An existence theorem for exceptional bundles on $\mathrm K3$ surfaces. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 373-388. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/