An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 373-388

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete invariants of exceptional bundles on a $\mathrm K3$ surface $S$ obey the equation $c_1^2-2r(r-c_2+c_1^2/2)=-2$. In this paper it is proved that if the triple $(r,c_1,c_2)\in\mathbf Z\times\operatorname{Pic}(S)\times\mathbf Z$ satisfies this equation, then there exists an exceptional bundle $E$ on $S$ for which $r(E)=r$, $c_1(E)=c_1$ and $c_2(E)=c_2$ (modulo numerical equivalence). In addition, methods of constructing exceptional bundles on a $\mathrm K3$ surface are indicated. Bibliography: 10 titles.
@article{IM2_1990_34_2_a7,
     author = {S. A. Kuleshov},
     title = {An existence theorem for exceptional bundles on $\mathrm K3$ surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {373--388},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/}
}
TY  - JOUR
AU  - S. A. Kuleshov
TI  - An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 373
EP  - 388
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/
LA  - en
ID  - IM2_1990_34_2_a7
ER  - 
%0 Journal Article
%A S. A. Kuleshov
%T An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
%J Izvestiya. Mathematics 
%D 1990
%P 373-388
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/
%G en
%F IM2_1990_34_2_a7
S. A. Kuleshov. An existence theorem for exceptional bundles on $\mathrm K3$ surfaces. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 373-388. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a7/