@article{IM2_1990_34_2_a5,
author = {V. A. Kozlov and V. A. Kondrat'ev and V. G. Maz'ya},
title = {On sign variation and the absence of {\textquotedblleft}strong{\textquotedblright} zeros of solutions of elliptic equations},
journal = {Izvestiya. Mathematics},
pages = {337--353},
year = {1990},
volume = {34},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/}
}
TY - JOUR AU - V. A. Kozlov AU - V. A. Kondrat'ev AU - V. G. Maz'ya TI - On sign variation and the absence of “strong” zeros of solutions of elliptic equations JO - Izvestiya. Mathematics PY - 1990 SP - 337 EP - 353 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/ LA - en ID - IM2_1990_34_2_a5 ER -
V. A. Kozlov; V. A. Kondrat'ev; V. G. Maz'ya. On sign variation and the absence of “strong” zeros of solutions of elliptic equations. Izvestiya. Mathematics, Tome 34 (1990) no. 2, pp. 337-353. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/
[1] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, M., 1962, 336 pp. | MR
[2] Duffin R. J., “On a question of Hadamard concerning super-biharmonic functions”, Journ. of Math. and Physics, 27:3 (1948), 253–258 | MR
[3] Kondratev V. A., Eidelman S. D., “Polozhitelnye resheniya lineinykh uravnenii s chastnymi proizvodnymi”, Tr. Mosk. matem. ob-va, 31, 1974, 85–146 | MR
[4] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1967, 209–292
[5] Mazya V. G., Plamenevskii B. A., “O psevdoanalitichnosti reshenii vozmuschennogo poligarmonicheskogo uravneniya v $\mathbf{R}^n$”, Teoriya rasseyaniya, teoriya kolebanii, LOMI, L., 1979, 75–91 | MR
[6] Mazya V. G., Plamenevskii B. A., “O printsipe maksimuma dlya bigarmonicheskogo uravneniya v oblasti s konicheskimi tochkami”, Izv. Vyssh. uch. zaved. Matematika, 1981, no. 2, 52–59 | MR
[7] Ter-Akopyants L. G., “O kornyakh kharakteristicheskikh uravnenii uprugogo klina”, Vestn. LGU, 1983, no. 7, 116–118
[8] Carleman T., “Sur un probléme d'unicité pour les systémes d'équations aux dérivées partielles à deux variables indépendantes”, Ark. Mat., 29 (1939), 1–9 | MR
[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, t. 4., Mir, M., 1982, 428 pp. | MR
[10] Sawyer E. T., “Unique continuation for Schrodinger operators in dimension three or less”, Ann. Inst. Fourier, 33:3 (1984), 189–200 | MR