On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 337-353

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors prove the existence of a convex domain $G$ with smooth boundary for which an eigenfunction corresponding to an eigenvalue of problem with operators of elliptic type is of variable sign. Bibliography: 10 titles.
@article{IM2_1990_34_2_a5,
     author = {V. A. Kozlov and V. A. Kondrat'ev and V. G. Maz'ya},
     title = {On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {337--353},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - V. A. Kondrat'ev
AU  - V. G. Maz'ya
TI  - On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 337
EP  - 353
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/
LA  - en
ID  - IM2_1990_34_2_a5
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A V. A. Kondrat'ev
%A V. G. Maz'ya
%T On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
%J Izvestiya. Mathematics 
%D 1990
%P 337-353
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/
%G en
%F IM2_1990_34_2_a5
V. A. Kozlov; V. A. Kondrat'ev; V. G. Maz'ya. On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 337-353. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/