On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 337-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors prove the existence of a convex domain $G$ with smooth boundary for which an eigenfunction corresponding to an eigenvalue of problem with operators of elliptic type is of variable sign. Bibliography: 10 titles.
@article{IM2_1990_34_2_a5,
     author = {V. A. Kozlov and V. A. Kondrat'ev and V. G. Maz'ya},
     title = {On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {337--353},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - V. A. Kondrat'ev
AU  - V. G. Maz'ya
TI  - On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 337
EP  - 353
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/
LA  - en
ID  - IM2_1990_34_2_a5
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A V. A. Kondrat'ev
%A V. G. Maz'ya
%T On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
%J Izvestiya. Mathematics 
%D 1990
%P 337-353
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/
%G en
%F IM2_1990_34_2_a5
V. A. Kozlov; V. A. Kondrat'ev; V. G. Maz'ya. On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 337-353. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/

[1] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, M., 1962, 336 pp. | MR

[2] Duffin R. J., “On a question of Hadamard concerning super-biharmonic functions”, Journ. of Math. and Physics, 27:3 (1948), 253–258 | MR

[3] Kondratev V. A., Eidelman S. D., “Polozhitelnye resheniya lineinykh uravnenii s chastnymi proizvodnymi”, Tr. Mosk. matem. ob-va, 31, 1974, 85–146 | MR

[4] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1967, 209–292

[5] Mazya V. G., Plamenevskii B. A., “O psevdoanalitichnosti reshenii vozmuschennogo poligarmonicheskogo uravneniya v $\mathbf{R}^n$”, Teoriya rasseyaniya, teoriya kolebanii, LOMI, L., 1979, 75–91 | MR

[6] Mazya V. G., Plamenevskii B. A., “O printsipe maksimuma dlya bigarmonicheskogo uravneniya v oblasti s konicheskimi tochkami”, Izv. Vyssh. uch. zaved. Matematika, 1981, no. 2, 52–59 | MR

[7] Ter-Akopyants L. G., “O kornyakh kharakteristicheskikh uravnenii uprugogo klina”, Vestn. LGU, 1983, no. 7, 116–118

[8] Carleman T., “Sur un probléme d'unicité pour les systémes d'équations aux dérivées partielles à deux variables indépendantes”, Ark. Mat., 29 (1939), 1–9 | MR

[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, t. 4., Mir, M., 1982, 428 pp. | MR

[10] Sawyer E. T., “Unique continuation for Schrodinger operators in dimension three or less”, Ann. Inst. Fourier, 33:3 (1984), 189–200 | MR