On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 337-353
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors prove the existence of a convex domain $G$ with smooth boundary for which an eigenfunction corresponding to an eigenvalue of problem with operators of elliptic type is of variable sign.
Bibliography: 10 titles.
@article{IM2_1990_34_2_a5,
author = {V. A. Kozlov and V. A. Kondrat'ev and V. G. Maz'ya},
title = {On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations},
journal = {Izvestiya. Mathematics },
pages = {337--353},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/}
}
TY - JOUR AU - V. A. Kozlov AU - V. A. Kondrat'ev AU - V. G. Maz'ya TI - On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations JO - Izvestiya. Mathematics PY - 1990 SP - 337 EP - 353 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/ LA - en ID - IM2_1990_34_2_a5 ER -
%0 Journal Article %A V. A. Kozlov %A V. A. Kondrat'ev %A V. G. Maz'ya %T On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations %J Izvestiya. Mathematics %D 1990 %P 337-353 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/ %G en %F IM2_1990_34_2_a5
V. A. Kozlov; V. A. Kondrat'ev; V. G. Maz'ya. On sign variation and the absence of ``strong'' zeros of solutions of elliptic equations. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 337-353. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a5/