Smooth measures and the law of the iterated logarithm
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 455-463

Voir la notice de l'article provenant de la source Math-Net.Ru

A measure $\mu$ defined on the unit circle $\partial\mathbf D$ is called smooth if $|\mu(I')-\mu(I'')|\leqslant C|I'|$ for any two adjacent intervals, $I',I''\subset\partial\mathbf D$ of equal length. It is shown that smooth measures are absolutely continuous with respect to Hausdorff measure with weight function $t(\log\frac1t\log\log\log\frac1t)^{1/2}$, and that this result is sharp. The results are applied to the well-known problem of the angular derivative of a univalent function. Bibliography: 14 titles.
@article{IM2_1990_34_2_a12,
     author = {N. G. Makarov},
     title = {Smooth measures and the law of the iterated logarithm},
     journal = {Izvestiya. Mathematics },
     pages = {455--463},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a12/}
}
TY  - JOUR
AU  - N. G. Makarov
TI  - Smooth measures and the law of the iterated logarithm
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 455
EP  - 463
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a12/
LA  - en
ID  - IM2_1990_34_2_a12
ER  - 
%0 Journal Article
%A N. G. Makarov
%T Smooth measures and the law of the iterated logarithm
%J Izvestiya. Mathematics 
%D 1990
%P 455-463
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a12/
%G en
%F IM2_1990_34_2_a12
N. G. Makarov. Smooth measures and the law of the iterated logarithm. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 455-463. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a12/