Smooth measures and the law of the iterated logarithm
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 455-463
Voir la notice de l'article provenant de la source Math-Net.Ru
A measure $\mu$ defined on the unit circle $\partial\mathbf D$ is called smooth if $|\mu(I')-\mu(I'')|\leqslant C|I'|$ for any two adjacent intervals,
$I',I''\subset\partial\mathbf D$ of equal length. It is shown that smooth measures are absolutely continuous with respect to Hausdorff measure with weight function $t(\log\frac1t\log\log\log\frac1t)^{1/2}$, and that this result is sharp. The results are applied to the well-known problem of the angular derivative of a univalent function.
Bibliography: 14 titles.
@article{IM2_1990_34_2_a12,
author = {N. G. Makarov},
title = {Smooth measures and the law of the iterated logarithm},
journal = {Izvestiya. Mathematics },
pages = {455--463},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a12/}
}
N. G. Makarov. Smooth measures and the law of the iterated logarithm. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 455-463. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a12/