The distribution of Hardy--Littlewood numbers in arithmetic progressions
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 213-228

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is obtained for the number of solutions of the congruence $$ p+n^2\equiv l\ (\operatorname{mod}D),\qquad p\leqslant x,\quad n\leqslant\sqrt x,\quad(l,D)=1, $$ where $D$ is a sufficiently large prime. Bibliography: 7 titles.
@article{IM2_1990_34_1_a9,
     author = {Z. Kh. Rakhmonov},
     title = {The distribution of {Hardy--Littlewood} numbers in arithmetic progressions},
     journal = {Izvestiya. Mathematics },
     pages = {213--228},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a9/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - The distribution of Hardy--Littlewood numbers in arithmetic progressions
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 213
EP  - 228
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a9/
LA  - en
ID  - IM2_1990_34_1_a9
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T The distribution of Hardy--Littlewood numbers in arithmetic progressions
%J Izvestiya. Mathematics 
%D 1990
%P 213-228
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a9/
%G en
%F IM2_1990_34_1_a9
Z. Kh. Rakhmonov. The distribution of Hardy--Littlewood numbers in arithmetic progressions. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 213-228. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a9/