Homology of the full linear group over a~local ring, and Milnor's $K$-theory
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 121-145

Voir la notice de l'article provenant de la source Math-Net.Ru

For rings with a large number of units the authors prove a strengthened theorem on homological stabilization: the homomorphism $H_k(\operatorname{GL}_n(A))\to H_k(\operatorname{GL}(A))$ is surjective for $n\geqslant k+\operatorname{sr}A-1$ and bijective for $n\geqslant k+\operatorname{sr}A$. If $A$ is a local ring with an infinite residue field, then this result admits further refinement: the homomorphism $H_n(\operatorname{GL}_n(A))\to H_n(\operatorname{GL}(A))$ is bijective and the factor group $H_n(\operatorname{GL}(A))/H_n(\operatorname{GL}_{n-1}(A))$ is canonically isomorphic to Milnor's $n$ th $K$-group of the ring $A$. The results are applied to compute the Chow groups of algebraic varieties. Bibliography: 16 titles.
@article{IM2_1990_34_1_a5,
     author = {Yu. P. Nesterenko and A. A. Suslin},
     title = {Homology of the full linear group over a~local ring, and {Milnor's} $K$-theory},
     journal = {Izvestiya. Mathematics },
     pages = {121--145},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a5/}
}
TY  - JOUR
AU  - Yu. P. Nesterenko
AU  - A. A. Suslin
TI  - Homology of the full linear group over a~local ring, and Milnor's $K$-theory
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 121
EP  - 145
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a5/
LA  - en
ID  - IM2_1990_34_1_a5
ER  - 
%0 Journal Article
%A Yu. P. Nesterenko
%A A. A. Suslin
%T Homology of the full linear group over a~local ring, and Milnor's $K$-theory
%J Izvestiya. Mathematics 
%D 1990
%P 121-145
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a5/
%G en
%F IM2_1990_34_1_a5
Yu. P. Nesterenko; A. A. Suslin. Homology of the full linear group over a~local ring, and Milnor's $K$-theory. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 121-145. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a5/