Smoothness of the value function for a~controlled diffusion process in a~domain
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 65-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author gives conditions on the behavior of a controlled diffusion process within and on the boundary of a domain that are sufficient for the value function to have two bounded generalized derivatives and to satisfy the Bellman equation. These conditions are almost necessary even for uncontrolled diffusion processes, and at the same time they encompass, for example, the heat equation in a disc and the Monge-Ampère equation in a convex domain. Bibliography: 24 titles.
@article{IM2_1990_34_1_a3,
     author = {N. V. Krylov},
     title = {Smoothness of the value function for a~controlled diffusion process in a~domain},
     journal = {Izvestiya. Mathematics },
     pages = {65--95},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Smoothness of the value function for a~controlled diffusion process in a~domain
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 65
EP  - 95
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/
LA  - en
ID  - IM2_1990_34_1_a3
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Smoothness of the value function for a~controlled diffusion process in a~domain
%J Izvestiya. Mathematics 
%D 1990
%P 65-95
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/
%G en
%F IM2_1990_34_1_a3
N. V. Krylov. Smoothness of the value function for a~controlled diffusion process in a~domain. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 65-95. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/

[1] Krylov N. V., “Ob otsenkakh momentov kvaziproizvodnykh reshenii stokhasticheskikh uravnenii po nachalnym dannym i ikh primenenii”, Matem. sb., 136 (1988), 510–529 | MR | Zbl

[2] Krylov N. V., “Ob upravlenii diffuzionnymi protsessami na poverkhnosti v evklidovom prostranstve”, Matem. sb., 137:2 (1988), 184–201 | MR | Zbl

[3] Krylov N. V., “Some new results in the theory of nonlinear elliptic and parabolic equations”, Proc. Internat. Congr. Math., v. 2, 1986, 1101–1109 | MR

[4] Krylov N. V., “O bezuslovnoi razreshimosti uravneniya Bellmana s postoyannymi koeffitsientami v vypuklykh oblastyakh”, Matem. sb., 135:3 (1988), 297–311 | MR | Zbl

[5] Fleming W. H., “Duality and a priori estimates in Markovian optimization problems”, J. Math. Anal. Appl., 16 (1966), 254–279 | DOI | MR

[6] Freidlin M. I., “O gladkosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. AN SSSR. Ser. matem., 32:6 (1968), 1391–1413 | MR | Zbl

[7] Safonov M. V., “O zadache Dirikhle dlya uravneniya Bellmana v ploskoi oblasti”, Matem. sb., 102:2 (1977), 260–279 | MR | Zbl

[8] Safonov M. V., “O zadache Dirikhle dlya uravneniya Bellmana v mnogomernoi oblasti”, Dokl. AN SSSR, 253:3 (1980), 535–540 | MR | Zbl

[9] Lions P. L., “Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. III: Regularity of the optimal cost function”, Nonlinear partial differential equations and applications. College de France seminar, V, Pitman, London, 1983, 95–205 | MR

[10] Krylov N. V., “Ob upravlenii diffuzionnym protsessom do momenta pervogo vykhoda iz oblasti”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 1029–1048 | MR | Zbl

[11] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977, 400 pp. | MR

[12] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985, 376 pp. | MR

[13] Safonov M. V., “O klassicheskom reshenii ellipticheskogo uravneniya Bellmana”, Dokl. AN SSSR, 278:4 (1984), 810–813 | MR | Zbl

[14] Krylov N. V., “Nekotorye novye rezultaty iz teorii upravlyaemykh diffuzionnykh protsessov”, Matem. sb., 109:1 (1979), 146–164 | MR | Zbl

[15] Krylov N. V., “Ob upravlyaemykh diffuzionnykh protsessakh s neogranichennymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 734–759 | MR | Zbl

[16] Kohn J. J., Nirenberg L., “Degenerate elliptic-parabolic equations of second order”, Comm. Pure and Appl. Math., 20:4 (1967), 551–585 | DOI | MR

[17] Oleinik O. A., Radkevich E. V., Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Itogi nauki. Mat. analiz 1969, VINITI, M., 1971 | MR | Zbl

[18] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, 1983, 513 pp. | MR | Zbl

[19] Evans L. C, Friedman A., “Optimal stochastic switching and the Dirichlet problem for the Bellman equation”, Trans. Amer. Math. Soc., 253 (1979), 365–389 | DOI | MR | Zbl

[20] Evans L. C., Lions P. L., “Resolution dès équation de Hamilton–Jacobi–Bellman pour des opérateurs uniformément elliptiques”, Comptes Rendus Acad. Sci. Paris. Ser. A-B, 290 (1980), 1049–1052 | MR | Zbl

[21] Ivochkina N. M., “Klassicheskaya razreshimost zadachi Dirikhle dlya uravneniya Monzha–Ampera”, Zap. nauchnykh seminarov LOMI AN SSSR, 131, 1983, 72–79 | MR | Zbl

[22] Urbas J., I. E., Regularity of generalized solutions of Monge–Ampere equations, Preprint, 1987 | MR | Zbl

[23] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for the degenerate Monge–Ampěre equation, Preprint

[24] Krylov N. V., “O pervoi kraevoi zadache dlya nelineinykh vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 242–269 | Zbl