Smoothness of the value function for a~controlled diffusion process in a~domain
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 65-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The author gives conditions on the behavior of a controlled diffusion process within and on the boundary of a domain that are sufficient for the value function to have two bounded generalized derivatives and to satisfy the Bellman equation. These conditions are almost necessary even for uncontrolled diffusion processes, and at the same time they encompass, for example, the heat equation in a disc and the Monge-Ampère equation in a convex domain. Bibliography: 24 titles.
@article{IM2_1990_34_1_a3,
     author = {N. V. Krylov},
     title = {Smoothness of the value function for a~controlled diffusion process in a~domain},
     journal = {Izvestiya. Mathematics },
     pages = {65--95},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Smoothness of the value function for a~controlled diffusion process in a~domain
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 65
EP  - 95
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/
LA  - en
ID  - IM2_1990_34_1_a3
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Smoothness of the value function for a~controlled diffusion process in a~domain
%J Izvestiya. Mathematics 
%D 1990
%P 65-95
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/
%G en
%F IM2_1990_34_1_a3
N. V. Krylov. Smoothness of the value function for a~controlled diffusion process in a~domain. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 65-95. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a3/