Analytic perturbation theory for a~periodic potential
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 43-64
Voir la notice de l'article provenant de la source Math-Net.Ru
The operator $\mathbf H_\alpha=(-\Delta)^l+\alpha V$ is considered in $L_2(\mathbf R^n)$; here $4l>n+1$, $n\geqslant2$, $V$ is a periodic potential, and $\alpha$ is a perturbation parameter, $-1\leqslant\alpha\leqslant1$. An analytic perturbation theory with respect to $\alpha$ is constructed for Block eigenfunctions and the corresponding eigenvalues of $\mathbf H_\alpha$. It is proved that, for large energies, when the quasimomentum belongs to a sufficiently rich set they admit expansion in a Taylor series in the disk $|\alpha|\leqslant1$, and these series are asymptotic in the energy and infinitely differentiable with respect to the quasimomentum.
Bibliography: 14 titles.
@article{IM2_1990_34_1_a2,
author = {Yu. E. Karpeshina},
title = {Analytic perturbation theory for a~periodic potential},
journal = {Izvestiya. Mathematics },
pages = {43--64},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a2/}
}
Yu. E. Karpeshina. Analytic perturbation theory for a~periodic potential. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 43-64. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a2/