Analytic perturbation theory for a~periodic potential
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 43-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator $\mathbf H_\alpha=(-\Delta)^l+\alpha V$ is considered in $L_2(\mathbf R^n)$; here $4l>n+1$, $n\geqslant2$, $V$ is a periodic potential, and $\alpha$ is a perturbation parameter, $-1\leqslant\alpha\leqslant1$. An analytic perturbation theory with respect to $\alpha$ is constructed for Block eigenfunctions and the corresponding eigenvalues of $\mathbf H_\alpha$. It is proved that, for large energies, when the quasimomentum belongs to a sufficiently rich set they admit expansion in a Taylor series in the disk $|\alpha|\leqslant1$, and these series are asymptotic in the energy and infinitely differentiable with respect to the quasimomentum. Bibliography: 14 titles.
@article{IM2_1990_34_1_a2,
     author = {Yu. E. Karpeshina},
     title = {Analytic perturbation theory for a~periodic potential},
     journal = {Izvestiya. Mathematics },
     pages = {43--64},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a2/}
}
TY  - JOUR
AU  - Yu. E. Karpeshina
TI  - Analytic perturbation theory for a~periodic potential
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 43
EP  - 64
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a2/
LA  - en
ID  - IM2_1990_34_1_a2
ER  - 
%0 Journal Article
%A Yu. E. Karpeshina
%T Analytic perturbation theory for a~periodic potential
%J Izvestiya. Mathematics 
%D 1990
%P 43-64
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a2/
%G en
%F IM2_1990_34_1_a2
Yu. E. Karpeshina. Analytic perturbation theory for a~periodic potential. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 43-64. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a2/