K3 surfaces over number fields and $l$-adic representations
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 575-595

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tate conjecture on algebraic cycles is proved for any algebraic K3 surface over a number field. If the canonical representation of the Hodge group in the $\mathbf Q$-lattice of transcendental cohomology classes is absolutely irreducible, then the Mumford–Tate conjecture is true for such a K3 surface. Bibliography: 18 titles.
@article{IM2_1989_33_3_a5,
     author = {S. G. Tankeev},
     title = {K3 surfaces over number fields and $l$-adic representations},
     journal = {Izvestiya. Mathematics },
     pages = {575--595},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - K3 surfaces over number fields and $l$-adic representations
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 575
EP  - 595
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/
LA  - en
ID  - IM2_1989_33_3_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T K3 surfaces over number fields and $l$-adic representations
%J Izvestiya. Mathematics 
%D 1989
%P 575-595
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/
%G en
%F IM2_1989_33_3_a5
S. G. Tankeev. K3 surfaces over number fields and $l$-adic representations. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 575-595. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/