K3 surfaces over number fields and $l$-adic representations
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 575-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tate conjecture on algebraic cycles is proved for any algebraic K3 surface over a number field. If the canonical representation of the Hodge group in the $\mathbf Q$-lattice of transcendental cohomology classes is absolutely irreducible, then the Mumford–Tate conjecture is true for such a K3 surface. Bibliography: 18 titles.
@article{IM2_1989_33_3_a5,
     author = {S. G. Tankeev},
     title = {K3 surfaces over number fields and $l$-adic representations},
     journal = {Izvestiya. Mathematics },
     pages = {575--595},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - K3 surfaces over number fields and $l$-adic representations
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 575
EP  - 595
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/
LA  - en
ID  - IM2_1989_33_3_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T K3 surfaces over number fields and $l$-adic representations
%J Izvestiya. Mathematics 
%D 1989
%P 575-595
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/
%G en
%F IM2_1989_33_3_a5
S. G. Tankeev. K3 surfaces over number fields and $l$-adic representations. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 575-595. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a5/

[1] Bogomolov F. A., “Tochki konechnogo poryadka na abelevom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 782–804 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; 1978 гл. 7–8 | MR | Zbl

[3] Deligne P., “La conjecture de Weil pour les surfaces K3”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl

[4] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkorpern”, Invent. Math., 73 (1983), 349–366 | DOI | MR | Zbl

[5] Zarhin Yu. G., “Hodge groupes of K3 surfaces”, J. fur die Reine und Angew. Math., 341 (1983), 193–220 | MR

[6] Zarkhin Yu. G., “Kruchenie abelevykh mnogoobrazii v konechnoi kharakteristike”, Matem. zametki, 22:1 (1977), 3–11 | Zbl

[7] Zarkhin Yu. G., “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $SL_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[8] Zarkhin Yu. G., Kogomologii algebraicheskikh mnogoobrazii i predstavleniya poluprostykh algebr Li, Preprint, NTsBI AN SSSR, Puschino, 1980

[9] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[10] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[11] Mumford D., “Families of abelian varieties”, Algebraic groups and discontinuous subgroups, Proc. Symp. in Pure Math., 9, 1966, 347–352 | MR

[12] Mumford D., “A note on Shimura's paper “Discontinuous Groups and Abelian Varieties””, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[13] Pyatetskii-Shapiro I. I., “Vzaimootnosheniya mezhdu gipotezami Teita i Khodzha dlya abelevykh mnogoobrazii”, Matem. sb., 85(127):4(8) (1971), 610–620

[14] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Arifmetika poverkhnostei tipa K3”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 132, 1973, 44–54

[15] Satake I., “Clifford algebras and families of abelian varieties”, Nagoya J. Math., 27:2 (1966), 435–446 | MR

[16] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[17] Teit Dzh., “Klassy izogenii abelevykh mnogoobrazii nad konechnymi polyami”, Matematika, 14:6 (1970), 129–137

[18] Tate T., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, N.Y., 1965, 93–110 | MR | Zbl