On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 473-499

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a Weil elliptic curve over the field $\mathbf Q$ of rational numbers, $L(E,\mathbf Q,s)$ the $L$-function over $\mathbf Q$, $\varepsilon=(-1)^{g+1}$, where $g$ is the order of the zero of $L(E,\mathbf Q,s)$ at $s=1$. Let $K$ be the imaginary quadratic extension of $\mathbf Q$ with discriminant $D\equiv\textrm{square}\pmod{4N}$, $y\in E(K)$ the Heegner point, $A=E$ or the nontrivial form of $E$ over $K$ according as $\varepsilon=-1$ or $1$. It is proved that if $y$ has infinite order (which is so if $(D,2N)=1$, $L'(E,K,1)\ne0)$, then the groups $A(\mathbf Q)$ and $Ш(A)$ are annihilated by a positive integer $C$ (in particular the groups are finite) determined by $y$. When $\varepsilon=1$ it is proved that $C^2$ coincides with the conjectured finite order of $Ш(A)$ for some $A$ with $L(A,\mathbf Q,1)\ne0$. It is also proved that $Ш$ is trivial for 23 elliptic curves. Bibliography: 21 titles.
@article{IM2_1989_33_3_a1,
     author = {V. A. Kolyvagin},
     title = {On~the {Mordell--Weil} and {Shafarevich--Tate} groups for {Weil} elliptic curves},
     journal = {Izvestiya. Mathematics },
     pages = {473--499},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 473
EP  - 499
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/
LA  - en
ID  - IM2_1989_33_3_a1
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
%J Izvestiya. Mathematics 
%D 1989
%P 473-499
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/
%G en
%F IM2_1989_33_3_a1
V. A. Kolyvagin. On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 473-499. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/