On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 473-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a Weil elliptic curve over the field $\mathbf Q$ of rational numbers, $L(E,\mathbf Q,s)$ the $L$-function over $\mathbf Q$, $\varepsilon=(-1)^{g+1}$, where $g$ is the order of the zero of $L(E,\mathbf Q,s)$ at $s=1$. Let $K$ be the imaginary quadratic extension of $\mathbf Q$ with discriminant $D\equiv\textrm{square}\pmod{4N}$, $y\in E(K)$ the Heegner point, $A=E$ or the nontrivial form of $E$ over $K$ according as $\varepsilon=-1$ or $1$. It is proved that if $y$ has infinite order (which is so if $(D,2N)=1$, $L'(E,K,1)\ne0)$, then the groups $A(\mathbf Q)$ and $Ш(A)$ are annihilated by a positive integer $C$ (in particular the groups are finite) determined by $y$. When $\varepsilon=1$ it is proved that $C^2$ coincides with the conjectured finite order of $Ш(A)$ for some $A$ with $L(A,\mathbf Q,1)\ne0$. It is also proved that $Ш$ is trivial for 23 elliptic curves. Bibliography: 21 titles.
@article{IM2_1989_33_3_a1,
     author = {V. A. Kolyvagin},
     title = {On~the {Mordell--Weil} and {Shafarevich--Tate} groups for {Weil} elliptic curves},
     journal = {Izvestiya. Mathematics },
     pages = {473--499},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 473
EP  - 499
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/
LA  - en
ID  - IM2_1989_33_3_a1
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
%J Izvestiya. Mathematics 
%D 1989
%P 473-499
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/
%G en
%F IM2_1989_33_3_a1
V. A. Kolyvagin. On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 473-499. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a1/

[1] Cassels J. W. S., “Arithmetic of curves of genus $1$. IV: Proof of the Hauptvermutung”, Journ. Reine u Angew. Math., 211 (1962), 95–112 | MR | Zbl

[2] Kolyvagin V. A., “Konechnost $E(\mathbf{Q})$ i $\text{\rm Sh}(E,\mathbf{Q})$ dlya podklassa krivykh Veilya”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 522–540 | MR

[3] Mazur B., Swinnerton-Dyer H., “Arithmetic of Weil curves”, Invent. Math., 25 (1974), 1–61 | DOI | MR | Zbl

[4] Gross B. H., Zagier D. B., “Heegner points and dirivates of $L$-series”, Invent. Math., 84 (1986), 225–320 | DOI | MR | Zbl

[5] Manin Yu. I., “Parabolicheskie tochki i dzeta-funktsii modulyarnykh krivykh”, Izv. AN SSSR. Ser. matem., 36:1 (1972), 19–66 | MR | Zbl

[6] Coates J., Wiles A., “On the conjecture of Birch and Swinnerton-Duer”, Invent. Math., 39 (1977), 223–25 | DOI | MR

[7] Perrin-Riou B., “Points de Heegner et dérivées de fonctions $L$ $p$-adiques”, C.R. Acad. Sci. Ser. 1, 303:5 (1986), 165–168 | MR | Zbl

[8] Zagier D. B., “Modular points, modular curves, modular surfaces and modular forms”, Lecture Notes in Mathematics, 1111, 1985, 225–248 | MR | Zbl

[9] Stevens G., Arithmetic on modular curves, Progress in Math., 20, 1982 | MR | Zbl

[10] Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl

[11] Leng S., Ellipticheskie funktsii, Nauka, M., 1984 | MR

[12] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969

[13] Tate J., “The arithmetic of elliptic curves”, Invent. Math., 23 (1974), 179–206 | DOI | MR | Zbl

[14] Manin Yu. I., “$p$-adicheskie avtomorfnye funktsii”, Itogi nauki i tekhn. Sovremennye problemy matematiki, 3, 1974, 5–92 | MR

[15] Leng S., Algebra, Mir, M., 1968

[16] Serr Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973 | Zbl

[17] Perrin-Riou B., “Fonction $L$ $p$-adiques et points de Heegner”, Asterisque, 147–148, 1987, 151–171 | MR | Zbl

[18] Perrin-Riou B., “Points de Heegner et dérivées de fonctions $L$ $p$-adiques”, Invent. Math., 89 (1987), 455–510 | DOI | MR | Zbl

[19] Rubin K., “Global units and ideal class groups”, Invent. Math., 89 (1987), 511–526 | DOI | MR | Zbl

[20] Rubin K., “Tate–Shafarevich groups and $L$-functions of elliptic curves with complex multiplication”, Invent. Math., 89 (1987), 527–560 | DOI | MR | Zbl

[21] Kummer E., “Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrucke”, J. Reine Angew. Math., 50 (1855), 212–232 | Zbl