Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 373-390
Voir la notice de l'article provenant de la source Math-Net.Ru
Notation: $D$ is a convex polygon with vertices $a_1,\dots,a_m$, $P_k$ is the half-plane bounded by the extension of the side $a_k$, $a_{k+1}$ and containing $D$, $E^p$ is the Hardy–Smirnov space on $D$, and $Q_s$ is the subspace of $E^p$ consisting of the analytic functions on $P_k$ that are periodic with period $a_{k+1}-a_k$ and that vanish at $\infty$. For suitable $s$ the subspaces $Q_s$ and $H_1^p,\dots,H_m^p$ generate $E^p$. Is $E^p$ ($1$) decomposable into their direct sum? If $m$ is odd, then the answer is positive for $p\ne2$ and negative for $p=2$.
Bibliography: 15 titles.
@article{IM2_1989_33_2_a7,
author = {A. M. Sedletskii},
title = {Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions},
journal = {Izvestiya. Mathematics },
pages = {373--390},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/}
}
TY - JOUR AU - A. M. Sedletskii TI - Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions JO - Izvestiya. Mathematics PY - 1989 SP - 373 EP - 390 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/ LA - en ID - IM2_1989_33_2_a7 ER -
A. M. Sedletskii. Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 373-390. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/