Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 373-390

Voir la notice de l'article provenant de la source Math-Net.Ru

Notation: $D$ is a convex polygon with vertices $a_1,\dots,a_m$, $P_k$ is the half-plane bounded by the extension of the side $a_k$, $a_{k+1}$ and containing $D$, $E^p$ is the Hardy–Smirnov space on $D$, and $Q_s$ is the subspace of $E^p$ consisting of the analytic functions on $P_k$ that are periodic with period $a_{k+1}-a_k$ and that vanish at $\infty$. For suitable $s$ the subspaces $Q_s$ and $H_1^p,\dots,H_m^p$ generate $E^p$. Is $E^p$ ($1$) decomposable into their direct sum? If $m$ is odd, then the answer is positive for $p\ne2$ and negative for $p=2$. Bibliography: 15 titles.
@article{IM2_1989_33_2_a7,
     author = {A. M. Sedletskii},
     title = {Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {373--390},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 373
EP  - 390
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/
LA  - en
ID  - IM2_1989_33_2_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
%J Izvestiya. Mathematics 
%D 1989
%P 373-390
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/
%G en
%F IM2_1989_33_2_a7
A. M. Sedletskii. Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 373-390. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/