Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 373-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

Notation: $D$ is a convex polygon with vertices $a_1,\dots,a_m$, $P_k$ is the half-plane bounded by the extension of the side $a_k$, $a_{k+1}$ and containing $D$, $E^p$ is the Hardy–Smirnov space on $D$, and $Q_s$ is the subspace of $E^p$ consisting of the analytic functions on $P_k$ that are periodic with period $a_{k+1}-a_k$ and that vanish at $\infty$. For suitable $s$ the subspaces $Q_s$ and $H_1^p,\dots,H_m^p$ generate $E^p$. Is $E^p$ ($1$) decomposable into their direct sum? If $m$ is odd, then the answer is positive for $p\ne2$ and negative for $p=2$. Bibliography: 15 titles.
@article{IM2_1989_33_2_a7,
     author = {A. M. Sedletskii},
     title = {Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {373--390},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 373
EP  - 390
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/
LA  - en
ID  - IM2_1989_33_2_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
%J Izvestiya. Mathematics 
%D 1989
%P 373-390
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/
%G en
%F IM2_1989_33_2_a7
A. M. Sedletskii. Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 373-390. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a7/

[1] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, Mir, M., 1963

[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] Leontev A. F., “O predstavlenii analiticheskoi funktsii v vide summy periodicheskikh”, Matem. sb., 93:4 (1974), 512–528 | MR

[4] Sedletskii A. M., “Bazisy iz eksponent v prostranstvakh $E^p$ na vypuklykh mnogougolnikakh”, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1101–1119 | MR

[5] Sedletskii A. M., “Razlozhenie analiticheskoi funktsii na summu periodicheskikh”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 833–853 | MR

[6] Melnik Yu. I., “O predstavlenii regulyarnykh funktsii v vide summy periodicheskikh”, Matem. zametki, 36:6 (1984), 847–856 | MR

[7] Sedletskii A. M., “Razlozhenie analiticheskoi v mnogougolnike funktsii na summu periodicheskikh”, Dokl. AN SSSR, 284:5 (1985), 1073–1075 | MR

[8] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, Uspekhi matem. nauk, 37:5 (1982), 51–95 | MR

[9] Kopson E., Asimptoticheskie razlozheniya, Mir, M., 1966

[10] Sedletskii A. M., “O razlozheniyakh funktsii v ryady Dirikhle na zamknutykh vypuklykh mnogougolnikakh”, Sib. matem. zhur., 19:4 (1978), 878–887 | MR

[11] Redheffer R. M., “Completeness of sets of complex exponentials”, Advanc. Math., 24 (1977), 1–62 | DOI | MR | Zbl

[12] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR

[13] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR

[14] Dedonne Zh., “Biortogonalnye sistemy”, Matematika (sb. perevodov), 3:4 (1959), 133–145

[15] Milman V. D., “Geometricheskaya teoriya prostranstv Banakha, I”, Uspekhi matem. nauk, 25:3 (1970), 113–174 | MR