Del Pezzo surfaces with log-terminal singularities.~II
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 355-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $Z$ is a del Pezzo surface with log-terminal singularities of index dividing $k$ and $\sigma\colon Y\to Z$ the minimal resolution of singularities of $Z$, we prove the inequality $\operatorname{rk\,Pic}Y$, where $A$ is an absolute constant. It follows from this that for fixed $k$ there are only a finite number of possible intersection graphs of all exponential curves on $Y$. In Part I these results were obtained under a certain restriction on the singularities. The proof uses methods taken from the theory of reflection groups in Lobachevsky space. Bibliography: 14 titles.
@article{IM2_1989_33_2_a6,
     author = {V. V. Nikulin},
     title = {Del {Pezzo} surfaces with log-terminal {singularities.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {355--372},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a6/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Del Pezzo surfaces with log-terminal singularities.~II
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 355
EP  - 372
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a6/
LA  - en
ID  - IM2_1989_33_2_a6
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Del Pezzo surfaces with log-terminal singularities.~II
%J Izvestiya. Mathematics 
%D 1989
%P 355-372
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a6/
%G en
%F IM2_1989_33_2_a6
V. V. Nikulin. Del Pezzo surfaces with log-terminal singularities.~II. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 355-372. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a6/

[1] Alekseev V. A., Nikulin V. V., “Klassifikatsiya poverkhnostei del Petstso s log-terminalnymi osobennostyami indeksa $\leqslant2$ i involyutsii na poverkhnostyakh K3”, Dokl. AN SSSR, 1989

[2] Alekseev V. A., Nikulin V. V., “Klassifikatsiya poverkhnostei del Petstso s logterminalnymi osobennostyami indeksa $\leqslant2$, involyutsii na poverkhnostyakh K3 i gruppy otrazhenii v prostranstvakh Lobachevskogo”, Voprosy chistoi i prikladnoi matematiki (doklady po matematike i ee prilozheniyam), 2, no. 2, 1988 | MR

[3] Vinberg E. B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. Mosk. matem. ob-va, 47, 1984, 68–102 | MR | Zbl

[4] Vinberg E. B., “Giperbolicheskie gruppy otrazhenii”, Uspekhi matem. nauk, 40 (1985), 29–66 | MR | Zbl

[5] Iliev A. I., “Log-terminalnye osobennosti algebraicheskikh poverkhnostei”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1986, no. 3, 38–44 | MR

[6] Nikulin V. V., “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 | MR | Zbl

[7] Nikulin V. V., “Poverkhnosti del Petstso s log-terminalnymi osobennostyami, I”, Matem. sb., 180:2 (1989), 226–243 | MR | Zbl

[8] Prokhorov M. N., “Otsutstvie diskretnykh grupp otrazhenii s nekompaktnym fundamentalnym mnogogrannikom konechnogo ob'ema v prostranstve Lobachevskogo bolshoi razmernosti”, Izv. AN SSSR. Ser. matem., 50:2 (1986), 413–424 | MR | Zbl

[9] Khovanskii A. G., “Giperploskie secheniya mnogogrannikov, toricheskie mnogoobraziya i diskretnye gruppy v prostranstve Lobachevskogo”, Funkts. analiz i ego prilozh., 20 (1986), 50–61 | MR

[10] Tsvetkovich D., Dub M., Zakhs X., Spektry grafov. Teoriya i primenenie, Nauk. dumka, Kiev, 1984 | MR

[11] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. matem., 49:3, 635–651 | MR | Zbl

[12] Nikulin V. V., Poverkhnosti del Petstso s log-terminalnymi osobennostyami. Algebraicheskaya geometriya, Dep. v VINITI, 1988

[13] Brieskorn E. V., “Rationale Singularitäten komplexer Flähen”, Inv. Math., 4 (1967–1968), 336–358 | DOI | MR

[14] Kollar J., “The structure of algebraic three-folds: An introduction to Mori's program”, Bull. Amer. Math. Soc. (New Series), 7:2 (1987), 211–272 | DOI | MR