Del Pezzo surfaces with log-terminal singularities.~II
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 355-372
Voir la notice de l'article provenant de la source Math-Net.Ru
If $Z$ is a del Pezzo surface with log-terminal singularities of index dividing $k$ and $\sigma\colon Y\to Z$ the minimal resolution of singularities of $Z$, we prove the inequality $\operatorname{rk\,Pic}Y$, where $A$ is an absolute constant. It follows from this that for fixed $k$ there are only a finite number of possible intersection graphs of all exponential curves on $Y$. In Part I these results were obtained under a certain restriction on the singularities.
The proof uses methods taken from the theory of reflection groups in Lobachevsky space.
Bibliography: 14 titles.
@article{IM2_1989_33_2_a6,
author = {V. V. Nikulin},
title = {Del {Pezzo} surfaces with log-terminal {singularities.~II}},
journal = {Izvestiya. Mathematics },
pages = {355--372},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a6/}
}
V. V. Nikulin. Del Pezzo surfaces with log-terminal singularities.~II. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 355-372. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a6/