Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1989_33_2_a2, author = {R. L. Krasauskas and Yu. P. Solov'ev}, title = {Rational {Hermitian} $K$-theory and dihedral homology}, journal = {Izvestiya. Mathematics }, pages = {261--293}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {1989}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a2/} }
R. L. Krasauskas; Yu. P. Solov'ev. Rational Hermitian $K$-theory and dihedral homology. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 261-293. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a2/
[1] Tsygan B. L., “O gomologiyakh nekotorykh matrichnykh superalgebr Li”, Funkts. analiz i ego prilozh., 20:2 (1986), 90–91 | MR | Zbl
[2] Krasauskas R. L., Lapin S. V., Solovev Yu. P., “Diedralnye gomologii i kogomologii”, Vestn. MGU. Ser. matem., mekh., 1987, no. 4, 28–32 | MR
[3] Krasauskas R. L., Lapin S. V., Solovev Yu. P., “Diedralnye gomologii i kogomologii. Osnovnye ponyatiya i konstruktsii”, Matem. sb., 133(175):5 (1987), 25–48 | MR
[4] Burghelea D., “Cyclic homology and algebraic $K$-theory of spaces, I”, Proc. Summer Institute on algebraic $K$-theory, Boulder, Colorado, 1983
[5] Quillen D., “Rational homotopy theory”, Ann. of Math., 90 (1969), 205–295 | DOI | MR | Zbl
[6] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947
[7] Dedonne Zh., Keroll Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974 | MR
[8] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl
[9] Brauer R., “On algebras which are connected with the semisimple continuous groups”, Ann. of Math., 38 (1937), 857–872 | DOI | MR | Zbl
[10] Wall C. T. C., Surgery on compact manifolds, Academic Press, London, 1970 | MR
[11] Karoubi M., Villamayor O., “$K$-theorie algebrique et $K$-theorie topologique, II”, Math. Scand., 32 (1973), 57–86 | MR | Zbl
[12] Burghelea D., Fiedorowicz Z., “Hermitian algebraic $K$-theory of topological spaces”, Lect. Notes Math., 1046, 1983, 32–46 | MR
[13] Burghelea D., Fiedorowicz Z., Hermitian algebraic $K$-theory of simplicial rings and topological spaces, Preprint, Ohyo State University, 1985 | MR
[14] Mei Dzh., Geometriya iterirovannykh prostranstv petel; Бордман Дж., Фогт Р., Гомотопически инвариантные структуры на топологических пространствах, Мир, М., 1977
[15] Farrell F. T., Hsiang W. C., “On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds”, Proc. Symp. Pure Math., 32, 1978, 325–337, part I | MR | Zbl
[16] Waldhausen F., “Algebraic $K$-theory of topoliogical spaces, II”, Lect. Notes Math., 763, 1979, 356–394 | MR | Zbl
[17] May J. P., “$E_\infty$ spaces, group completions and permutative categories”, London Math. Soc. Lect. Notes, 11, 1974, 61–93 | MR
[18] Bousfild O. H., Gugenkheim V. K. A. M., “O $PL$-teorii De Rama i ratsionalnom gomotopicheskom tipe”, Gomotopicheskaya teoriya differentsialnykh form, Mir, M., 1981, 86–171
[19] Lemann D., “Gomotopicheskaya teoriya differentsialnykh form”, Gomotopicheskaya teoriya differentsialnykh form, Mir, M., 1981, 7–83 | MR
[20] Babenko I. K., “O veschestvennykh gomotopicheskikh svoistvakh polnykh peresechenii”, Izv. AN CSCP. Ser. matem., 43:5 (1979), 1004–1024 | MR | Zbl
[21] Borel A., “O kogomologiyakh glavnykh rassloennykh prostranstv i odnorodnykh prostranstv kompaktnykh grupp Li”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 163–246
[22] Krasauskas R. L., “Minimalnye modeli dlya vychisleniya tsiklicheskikh i diedralnykh gomologii”, KhVIII konferentsiya molodykh uchenykh MGU, mekhaniko-matem. fakultet, 1986, 49–50
[23] Vigue-Poirrier M., Burghelea D., “A model for cyclic homology and algebraic $K$-theory $1$-connected topological spaces”, J. Diff. Geom., 1985, no. 2, 243–253 | MR | Zbl
[24] Vigue-Poirrier M., Sullivan D., “The homology theory of the closed geodesic problem”, J. Diff. Geom., 11:4 (1976), 633–644 | MR | Zbl
[25] Sullivan D., “Infinitesimal computations in topology”, Publ. Math. IHES, 1977, no. 47, 269–331 | MR | Zbl