Rational Hermitian $K$-theory and dihedral homology
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 261-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the relations between Hermitian $K$-theory of topological spaces and the dihedral homology of differential graded algebras with involution. The results are applied to describe the rational homotopy type of the space of homeomorphisms of a simply-connected compact manifold. Bibliography: 25 titles.
@article{IM2_1989_33_2_a2,
     author = {R. L. Krasauskas and Yu. P. Solov'ev},
     title = {Rational {Hermitian} $K$-theory and dihedral homology},
     journal = {Izvestiya. Mathematics },
     pages = {261--293},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a2/}
}
TY  - JOUR
AU  - R. L. Krasauskas
AU  - Yu. P. Solov'ev
TI  - Rational Hermitian $K$-theory and dihedral homology
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 261
EP  - 293
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a2/
LA  - en
ID  - IM2_1989_33_2_a2
ER  - 
%0 Journal Article
%A R. L. Krasauskas
%A Yu. P. Solov'ev
%T Rational Hermitian $K$-theory and dihedral homology
%J Izvestiya. Mathematics 
%D 1989
%P 261-293
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a2/
%G en
%F IM2_1989_33_2_a2
R. L. Krasauskas; Yu. P. Solov'ev. Rational Hermitian $K$-theory and dihedral homology. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 261-293. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a2/

[1] Tsygan B. L., “O gomologiyakh nekotorykh matrichnykh superalgebr Li”, Funkts. analiz i ego prilozh., 20:2 (1986), 90–91 | MR | Zbl

[2] Krasauskas R. L., Lapin S. V., Solovev Yu. P., “Diedralnye gomologii i kogomologii”, Vestn. MGU. Ser. matem., mekh., 1987, no. 4, 28–32 | MR

[3] Krasauskas R. L., Lapin S. V., Solovev Yu. P., “Diedralnye gomologii i kogomologii. Osnovnye ponyatiya i konstruktsii”, Matem. sb., 133(175):5 (1987), 25–48 | MR

[4] Burghelea D., “Cyclic homology and algebraic $K$-theory of spaces, I”, Proc. Summer Institute on algebraic $K$-theory, Boulder, Colorado, 1983

[5] Quillen D., “Rational homotopy theory”, Ann. of Math., 90 (1969), 205–295 | DOI | MR | Zbl

[6] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947

[7] Dedonne Zh., Keroll Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974 | MR

[8] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[9] Brauer R., “On algebras which are connected with the semisimple continuous groups”, Ann. of Math., 38 (1937), 857–872 | DOI | MR | Zbl

[10] Wall C. T. C., Surgery on compact manifolds, Academic Press, London, 1970 | MR

[11] Karoubi M., Villamayor O., “$K$-theorie algebrique et $K$-theorie topologique, II”, Math. Scand., 32 (1973), 57–86 | MR | Zbl

[12] Burghelea D., Fiedorowicz Z., “Hermitian algebraic $K$-theory of topological spaces”, Lect. Notes Math., 1046, 1983, 32–46 | MR

[13] Burghelea D., Fiedorowicz Z., Hermitian algebraic $K$-theory of simplicial rings and topological spaces, Preprint, Ohyo State University, 1985 | MR

[14] Mei Dzh., Geometriya iterirovannykh prostranstv petel; Бордман Дж., Фогт Р., Гомотопически инвариантные структуры на топологических пространствах, Мир, М., 1977

[15] Farrell F. T., Hsiang W. C., “On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds”, Proc. Symp. Pure Math., 32, 1978, 325–337, part I | MR | Zbl

[16] Waldhausen F., “Algebraic $K$-theory of topoliogical spaces, II”, Lect. Notes Math., 763, 1979, 356–394 | MR | Zbl

[17] May J. P., “$E_\infty$ spaces, group completions and permutative categories”, London Math. Soc. Lect. Notes, 11, 1974, 61–93 | MR

[18] Bousfild O. H., Gugenkheim V. K. A. M., “O $PL$-teorii De Rama i ratsionalnom gomotopicheskom tipe”, Gomotopicheskaya teoriya differentsialnykh form, Mir, M., 1981, 86–171

[19] Lemann D., “Gomotopicheskaya teoriya differentsialnykh form”, Gomotopicheskaya teoriya differentsialnykh form, Mir, M., 1981, 7–83 | MR

[20] Babenko I. K., “O veschestvennykh gomotopicheskikh svoistvakh polnykh peresechenii”, Izv. AN CSCP. Ser. matem., 43:5 (1979), 1004–1024 | MR | Zbl

[21] Borel A., “O kogomologiyakh glavnykh rassloennykh prostranstv i odnorodnykh prostranstv kompaktnykh grupp Li”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 163–246

[22] Krasauskas R. L., “Minimalnye modeli dlya vychisleniya tsiklicheskikh i diedralnykh gomologii”, KhVIII konferentsiya molodykh uchenykh MGU, mekhaniko-matem. fakultet, 1986, 49–50

[23] Vigue-Poirrier M., Burghelea D., “A model for cyclic homology and algebraic $K$-theory $1$-connected topological spaces”, J. Diff. Geom., 1985, no. 2, 243–253 | MR | Zbl

[24] Vigue-Poirrier M., Sullivan D., “The homology theory of the closed geodesic problem”, J. Diff. Geom., 11:4 (1976), 633–644 | MR | Zbl

[25] Sullivan D., “Infinitesimal computations in topology”, Publ. Math. IHES, 1977, no. 47, 269–331 | MR | Zbl