Stochastically complete manifolds and summable harmonic functions
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 425-432
Voir la notice de l'article provenant de la source Math-Net.Ru
Main result: if on a geodesically complete Riemannian manifold $M$ the volume $V_R$ of a geodesic ball of radius $R$ with fixed center satisfies the condition
$\displaystyle\int^\infty\frac{R\,dR}{\ln V_R}=\infty$ then every nonnegative integrable superharmonic function on $M$ is equal to a constant.
Bibliography: 18 titles.
@article{IM2_1989_33_2_a11,
author = {A. A. Grigor'yan},
title = {Stochastically complete manifolds and summable harmonic functions},
journal = {Izvestiya. Mathematics },
pages = {425--432},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/}
}
A. A. Grigor'yan. Stochastically complete manifolds and summable harmonic functions. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 425-432. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/