Stochastically complete manifolds and summable harmonic functions
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 425-432

Voir la notice de l'article provenant de la source Math-Net.Ru

Main result: if on a geodesically complete Riemannian manifold $M$ the volume $V_R$ of a geodesic ball of radius $R$ with fixed center satisfies the condition $\displaystyle\int^\infty\frac{R\,dR}{\ln V_R}=\infty$ then every nonnegative integrable superharmonic function on $M$ is equal to a constant. Bibliography: 18 titles.
@article{IM2_1989_33_2_a11,
     author = {A. A. Grigor'yan},
     title = {Stochastically complete manifolds and summable harmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {425--432},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/}
}
TY  - JOUR
AU  - A. A. Grigor'yan
TI  - Stochastically complete manifolds and summable harmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 425
EP  - 432
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/
LA  - en
ID  - IM2_1989_33_2_a11
ER  - 
%0 Journal Article
%A A. A. Grigor'yan
%T Stochastically complete manifolds and summable harmonic functions
%J Izvestiya. Mathematics 
%D 1989
%P 425-432
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/
%G en
%F IM2_1989_33_2_a11
A. A. Grigor'yan. Stochastically complete manifolds and summable harmonic functions. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 425-432. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/