Stochastically complete manifolds and summable harmonic functions
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 425-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

Main result: if on a geodesically complete Riemannian manifold $M$ the volume $V_R$ of a geodesic ball of radius $R$ with fixed center satisfies the condition $\displaystyle\int^\infty\frac{R\,dR}{\ln V_R}=\infty$ then every nonnegative integrable superharmonic function on $M$ is equal to a constant. Bibliography: 18 titles.
@article{IM2_1989_33_2_a11,
     author = {A. A. Grigor'yan},
     title = {Stochastically complete manifolds and summable harmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {425--432},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/}
}
TY  - JOUR
AU  - A. A. Grigor'yan
TI  - Stochastically complete manifolds and summable harmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 425
EP  - 432
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/
LA  - en
ID  - IM2_1989_33_2_a11
ER  - 
%0 Journal Article
%A A. A. Grigor'yan
%T Stochastically complete manifolds and summable harmonic functions
%J Izvestiya. Mathematics 
%D 1989
%P 425-432
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/
%G en
%F IM2_1989_33_2_a11
A. A. Grigor'yan. Stochastically complete manifolds and summable harmonic functions. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 425-432. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a11/

[1] Azencott R., “Behavior of diffusion semi-proups at infinity”, Bull. Soc. Math. (France), 102 (1974), 193–240 | MR | Zbl

[2] Cheng S. Y., Yau S. T., “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl

[3] Davies E. B, “$L^1$ properties of second order elliptic operators”, Bull. London Math. Soc., 17:5 (1985), 417–436 | DOI | MR | Zbl

[4] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na mnogoobrazii”, Uspekhi matem. nauk, 37:3 (1982), 181–182 | MR

[5] Grigoryan A. A., “O stokhasticheski polnykh mnogoobraziyakh”, Dokl. AN SSSR, 290:3 (1986), 534–537 | MR

[6] Grigoryan A. A., “O suschestvovanii polozhitelnykh fundamentalnykh reshenii uravneniya Laplasa na rimanovykh mnogoobraziyakh”, Matem. sb., 128:3 (1985), 354–363 | MR | Zbl

[7] Dodziuk J., “Maximum principle for parabolic inequalities and the heat flow on open manifolds”, Indiana Univ. Math. J., 32:5 (1983), 703–716 | DOI | MR | Zbl

[8] Ichihara K., “Curvature, geodesies and the Brownian motion on a Riemannian manifold. II: Explosion properties”, Nagoya Math. J., 87 (1982), 115–125 | MR | Zbl

[9] Kuzmenko Yu. T., Molchanov S. A., “Kontrprimery k teoremam liuvilleva tipa”, Vest. MGU. Ser. matem., 1979, no. 6, 39–43 | MR

[10] Li P., Schoen R., “$L^p$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:3,4 (1984), 279–301 | MR | Zbl

[11] Nadirashvili N. S., “Ob odnoi teoreme liuvilleva tipa na rimanovom mnogoobrazii”, Uspekhi matem. nauk, 40:5 (1985), 259–260 | MR | Zbl

[12] Sario L., Nakai M., Wang C., Chung L.Ȯ. Classification theory of Riemannian manifolds, Lecture Notes Math., 605, 1977 | MR | Zbl

[13] Striehartz P. S., “Analysis of the Laplacian on the complete Riemannian manifold”, J. Fund Anal., 52:1 (1983), 48–79 | DOI | MR

[14] Varopoulos N. T., “Potential theory and diffusion on Riemannian manifolds”, Conference on harmonic analysis in honor of Antoni Zygmund, V. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983, 821–837 | MR

[15] Yau S. T., “Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry”, Indiana Univ. J., 25 (1976), 659–670 | DOI | MR | Zbl

[16] Yau S. T., “Harmonic functions on complete Riemannian manifolds”, Comm. Pure Appl. Math., 28:2 (1975), 201–228 | DOI | MR | Zbl

[17] Yau S. T., “On the heat Kernel of complete Riemannian manifold”, J. de Math. Pures Appl. Ser. 9, 57:2 (1978), 191–201 | MR | Zbl

[18] Littman W., Stampacchia G., Weinberger H. F., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 17:1,2 (1963), 43–47 | MR