Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1989_33_2_a0, author = {A. Yu. Veretennikov}, title = {On~rate of mixing and the averaging principle for hypoelliptic stochastic differential equations}, journal = {Izvestiya. Mathematics }, pages = {221--231}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {1989}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a0/} }
TY - JOUR AU - A. Yu. Veretennikov TI - On~rate of mixing and the averaging principle for hypoelliptic stochastic differential equations JO - Izvestiya. Mathematics PY - 1989 SP - 221 EP - 231 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a0/ LA - en ID - IM2_1989_33_2_a0 ER -
A. Yu. Veretennikov. On~rate of mixing and the averaging principle for hypoelliptic stochastic differential equations. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 221-231. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a0/
[1] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[2] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl
[3] Statulyavichus V. A., “Teoremy bolshikh uklonenii dlya summ zavisimykh sluchainykh velichin, I”, Litovskii matem. sb., XIX:2 (1979), 199–208
[4] Davydov Yu. A., “Usloviya peremeshivaniya dlya tsepei Markova”, Teoriya veroyatnostei i ee primenen., XVIII:2 (1973), 321–338 | MR
[5] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh uravnenii Ito”, IV Mezhd. Vilnyus. konf. po teorii veroyatn. i matem. statistike, Tezisy dokladov, t. I, In-t matem. i kibern. AN LitSSR, Vilnyus, 1985, 127–128
[6] Boltkausen E., “The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 60 (1982), 283–289 | DOI | MR
[7] Malinovskij V. K., “On some asymptotic relations and identities for Harris recurrent Markov chains”, Statistics and Control of stochastic processes, Steklov seminar, eds. N. V. Kjrylov et al. Optimization Software, Inc., Publ. Division, N.Y., 1984, 317–336 | MR
[8] Khasminskii R. Z., “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kybernetika, 4:3 (1968), 260–279
[9] Griffeath D., “A maximal coupling for Markov chains”, Z. Wahrscheinlichkeitstheorie varw. Gebiete, 31 (1975), 95–106 | DOI | MR | Zbl
[10] Stroock D. W., “The Malliavin calculus and its application to second order parabolic differential equations, I, II”, Math. Systems Theory, 14:1 (1981), 25–65 ; 2, 141–171 | DOI | MR | Zbl | MR | Zbl
[11] Veretennikov A. Yu., “Veroyatnostnye zadachi v teorii gipoelliptichnosti”, Izv. AN. SSSR. Ser. matem., 48:6 (1984), 1151–1170 | MR | Zbl
[12] Stroock D. W., Varadhan S. R. S., “On the support of diffusion processes with applications to the strong maximum principle”, Proceedings of Sixth Berkeley Symp. on Mathematical Statistics and Probability, v. 3, 333–360 | MR
[13] Bony G. M., “Principe du maximum, unicité du problème de Cauchy et inégalite de Harnack pour les operateurs elliptiques degenérés”, Ann. Inst. Fourier, 19 (1969), 277–304 | MR | Zbl
[14] Stroock D. W., Varadhan S. R. S., Multidimension diffusion processes, Springer-Verlag, Berlin et al., 1979 | MR | Zbl
[15] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR