Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with~$p_g>0$
Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 139-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the geometry and the periods of components of moduli of sheaves on a regular algebraic surface. Bibliography: 14 titles.
@article{IM2_1989_33_1_a6,
     author = {A. N. Tyurin},
     title = {Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with~$p_g>0$},
     journal = {Izvestiya. Mathematics },
     pages = {139--177},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a6/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with~$p_g>0$
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 139
EP  - 177
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a6/
LA  - en
ID  - IM2_1989_33_1_a6
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with~$p_g>0$
%J Izvestiya. Mathematics 
%D 1989
%P 139-177
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a6/
%G en
%F IM2_1989_33_1_a6
A. N. Tyurin. Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with~$p_g>0$. Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 139-177. http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a6/

[1] Arnold V. I., Teoriya katastrof, MGU, M., 1983

[2] Altman A., Kleiman S., “Compactifying the Picard scheme”, Adv. in Math., 35 (1980), 50–112 | DOI | MR | Zbl

[3] Artamkin I. V., “O deformatsii puchkov”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 660–665 | MR

[4] Drezet J. M., Le Potier J., “Fibres stables et fibres exeptionelles sur $\mathbf{P}^2$”, Ann. Sci. ENS, 18 (1985), 194–244 | MR

[5] Fulton W., Intersection theory, Springer-Verlag, Berlin, Heidelberg, N.Y., Tokyo, 1984 | MR | Zbl

[6] Godman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[7] Gorodentsev A. L., “Isklyuchitelnye rassloeniya na poverkhnostyakh s podvizhnym antikanonicheskim klassom”, Izv. AN SSSR. Ser. matem., 52:4, 740–757 | MR

[8] Gorodentsev A. L., Rudakov A. N., “Exceptional vector bundles on projective spaces”, Duke Math. J., 54:1, 115–130 | DOI | MR | Zbl

[9] Manin Yu. I., “Lektsii o $K$-funktore”, Uspekhi matem. nauk, 24:5 (1969), 3–86 | MR | Zbl

[10] Mestrano N., “Poincaré bundles for projective surfaces”, Ann. Inst. Fourier, 35:2 (1985), 217–249, Grenoble | MR | Zbl

[11] Mukai S., “Symplective structure of the moduli space of sheaves on an abelian or K3 surfaces”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[12] Mukai S., “On the moduli space of bundles on K3 surfaces, I”, Vector bundles on Algebraic Varieties (Bombay Colloquium), Oxford Univ. Press, 1984

[13] Tjurin A. N., “Cycles, curves and vector bundles on an algebraic surface”, Duke Math. J., 54:1, 1–26 | MR

[14] Tyurin A. N., “O periodakh kvadratichnykh differentsialov”, Uspekhi matem. nauk, 33:6 (1978), 149–195 | MR | Zbl