Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras
Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 85-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given of “extremal projectors” in the associative envelopes of reductive (finite-dimensional) Lie algebras. In terms of extremal projectors, a description is then obtained of (generalized) Mickelsson algebras. Finally, a characterization is given for these algebras in terms of generators and relations. Bibliography: 14 titles.
@article{IM2_1989_33_1_a3,
     author = {D. P. Zhelobenko},
     title = {Extremal projectors and generalized {Mickelsson} algebras over reductive {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {85--100},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a3/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 85
EP  - 100
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a3/
LA  - en
ID  - IM2_1989_33_1_a3
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras
%J Izvestiya. Mathematics 
%D 1989
%P 85-100
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a3/
%G en
%F IM2_1989_33_1_a3
D. P. Zhelobenko. Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras. Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a3/

[1] Zhelobenko D. Ya., “$S$-algebry i moduli Verma nad reduktivnymi algebrami Li”, Dokl. AN SSSR, 273:4 (1983), 785–788 | MR | Zbl

[2] Zhelobenko D. P., “An Introduction to the Theory of $S$-algebras on Reductive Lie Algebras”, Representations of Infinite-dimensional Lie Groups and Lie Algebras, Gordon and Breach, Overseas, 1987

[3] Zhelobenko D. Ya., “Ekstremalnye kotsikly na gruppakh Veilya”, Funkts. analiz i ego prilozh., 21:3 (1987), 11–21 | MR | Zbl

[4] Gelfand I. M., Kirillov A. L., “Struktura tela Li, svyazannogo s poluprostoi rasschepimoi algebroi Li”, Funkts. analiz i ego prilozh., 3:1 (1969), 7–26 | MR

[5] Shapovalov N. N., “Ob odnoi bilineinoi forme na universalnoi obertyvayuschei algebre kompleksnoi poluprostoi algebry Li”, Funkts. analiz i ego prilozh., 6:4 (1972), 65–70 | MR | Zbl

[6] Asherova R. S., Smirnov V. F., Tolstoi V. N., “Proektsionnye operatory dlya prostykh algebr Li”, Teor. matem. fiz., 8:2 (1971), 255–271 | MR | Zbl

[7] Asherova R. S., Smirnov V. F., Tolstoi V. I., “Opisanie nekotorogo klassa proektsionnykh operatorov dlya poluprostykh kompleksnykh algebr Li”, Matem. zametki, 26:1 (1979), 15–25 | MR | Zbl

[8] Leznov A. I., Savelev M. V., “Ob odnoi parametrizatsii kompaktnykh grupp”, Funkts. analiz i ego prilozh., 8:4 (1974), 87–88 | MR | Zbl

[9] Zhelobenko D. Ya., “Transvektornye algebry v teorii predstavlenii reduktivnykh algebr Li”, Dokl. AN SSSR, 288:1 (1986), 32–35 | MR

[10] Zhelobenko D. Ya., “Transvektornye algebry v teorii predstavlenii i dinamicheskie simmetrii”, Teoretiko-gruppovye metody v fizike, Nauka, M., 1986

[11] Mickelsson J., “Step algebras of semisimple subalgebras of Lie algerbas”, Rept. Math. Phys., 4 (1973), 307–318 | DOI | MR | Zbl

[12] Van den Hombergh, “A note on Mickelsson's step algebra”, Indag. Math., 37:2 (1975), 42–47 | MR

[13] Van den Hombergh, Harish-Chandra modules and representations of step algebra, Reprint, Krips Repro-Meppel, 1976

[14] Kashiwara M., “The Universal Verma Module and the $b$-Function”, Algebraic Groups and Related Topics, Adv. Studies in Pure Math., 6, 1985, 67–81 | MR | Zbl