A~normal form theorem for second-order classical logic with an axiom of choice
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 587-605
Voir la notice de l'article provenant de la source Math-Net.Ru
A cut-elimination theorem for the second-order logic with an axiom of choice of type $0,1$ or $1,1$ is proved. In the first case the Päppinghaus scheme is applied; in the second the calculus with an epsilon-symbol for predicates is used.
Bibliography: 5 titles.
@article{IM2_1989_32_3_a6,
author = {G. E. Mints},
title = {A~normal form theorem for second-order classical logic with an axiom of choice},
journal = {Izvestiya. Mathematics },
pages = {587--605},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/}
}
G. E. Mints. A~normal form theorem for second-order classical logic with an axiom of choice. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 587-605. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/