Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1989_32_3_a6, author = {G. E. Mints}, title = {A~normal form theorem for second-order classical logic with an axiom of choice}, journal = {Izvestiya. Mathematics }, pages = {587--605}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {1989}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/} }
G. E. Mints. A~normal form theorem for second-order classical logic with an axiom of choice. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 587-605. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/
[1] Tait W. W., “A non-constructive proof of Gentzen's Hauptsatz for second order predicate logic”, Bull. Amer. Math. Soc., 72 (1966), 980–983 | DOI | MR | Zbl
[2] Päppinghaus P., “Completeness properties of classical theories of finite type and thenormal form theorem”, Disc. Math., 207 (1983) | MR | Zbl
[3] Girard I. J., “Three-valued logic and cut-elimination”, Disc. Math., 136 (1976) | MR | Zbl
[4] Kreisel G., Takeuti G., “Formally self-referential propositions for cut free classical analysis and related systems”, Disc. Math., 118 (1974) | MR | Zbl
[5] Schütte K., “Syntactical and semantical properties of simple type theory”, J. Symbol Log., 25 (1960), 305–326 | DOI | MR | Zbl