A~normal form theorem for second-order classical logic with an axiom of choice
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 587-605

Voir la notice de l'article provenant de la source Math-Net.Ru

A cut-elimination theorem for the second-order logic with an axiom of choice of type $0,1$ or $1,1$ is proved. In the first case the Päppinghaus scheme is applied; in the second the calculus with an epsilon-symbol for predicates is used. Bibliography: 5 titles.
@article{IM2_1989_32_3_a6,
     author = {G. E. Mints},
     title = {A~normal form theorem for second-order classical logic with an axiom of choice},
     journal = {Izvestiya. Mathematics },
     pages = {587--605},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/}
}
TY  - JOUR
AU  - G. E. Mints
TI  - A~normal form theorem for second-order classical logic with an axiom of choice
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 587
EP  - 605
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/
LA  - en
ID  - IM2_1989_32_3_a6
ER  - 
%0 Journal Article
%A G. E. Mints
%T A~normal form theorem for second-order classical logic with an axiom of choice
%J Izvestiya. Mathematics 
%D 1989
%P 587-605
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/
%G en
%F IM2_1989_32_3_a6
G. E. Mints. A~normal form theorem for second-order classical logic with an axiom of choice. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 587-605. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a6/