Finiteness of $E(\mathbf Q)$ and $\textit{Ш}(E,\mathbf Q)$ for a~subclass of Weil curves
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 523-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be an elliptic curve over $\mathbf Q$, admitting a Weil parametrization $\gamma\colon X_N\to E$, $L(E,\mathbf Q,1)\ne0$. Let $K$ be an imaginary quadratic extension of $\mathbf Q$ with discriminant $\Delta\equiv\textrm{square}\pmod{4N})$, and let $y_K\in E(K)$ be a Heegner point. We show that if $y_K$ has infinite order ($K$ must not belong to a finite set of fields that can be described in terms of $\gamma$), then the Mordell–Weil group $E(\mathbf Q)$ and the Tate–Shafarevich group $Ш(E,\mathbf Q)$ of the curve $E$ (over $\mathbf Q$) are finite. For example, $Ш(X_{17},\mathbf Q)$ is finite. In particular, $E(\mathbf Q)$ and $Ш(E,\mathbf Q)$ are finite if $(\Delta,2N)=1$ and $L_f'(E,K,1)\ne0$, where $f=\infty$ or $f$ is a rational prime such that $\bigl(\frac fK\bigr)=1$ and $(f,Na_f)=1$, where $a_f$ is the coefficient of $f^{-s}$ in the $L$-series of $E$ over $\mathbf Q$. We indicate in terms of $E$, $K$, and $y_K$ a number annihilating $E(\mathbf Q)$ and $Ш(E,\mathbf Q)$. Bibliography: 11 titles.
@article{IM2_1989_32_3_a3,
     author = {V. A. Kolyvagin},
     title = {Finiteness of $E(\mathbf Q)$ and $\textit{{\CYRSH}}(E,\mathbf Q)$ for a~subclass of {Weil} curves},
     journal = {Izvestiya. Mathematics },
     pages = {523--541},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a3/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - Finiteness of $E(\mathbf Q)$ and $\textit{Ш}(E,\mathbf Q)$ for a~subclass of Weil curves
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 523
EP  - 541
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a3/
LA  - en
ID  - IM2_1989_32_3_a3
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T Finiteness of $E(\mathbf Q)$ and $\textit{Ш}(E,\mathbf Q)$ for a~subclass of Weil curves
%J Izvestiya. Mathematics 
%D 1989
%P 523-541
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a3/
%G en
%F IM2_1989_32_3_a3
V. A. Kolyvagin. Finiteness of $E(\mathbf Q)$ and $\textit{Ш}(E,\mathbf Q)$ for a~subclass of Weil curves. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 523-541. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a3/

[1] Coates J., Wiles A., “On the conjecture of Birch and Swinnerton-Dyer”, Invent. Math., 39 (1977), 223–251 | DOI | MR | Zbl

[2] Gross B. H., Zagier D. B., “Heegner points and derivaties of $L$-series”, Invent. Math., 84 (1986), 225–320 | DOI | MR | Zbl

[3] Mazur B., Swinnerton-Dyer H., “Arithmetic of Weil curves”, Invent. Math., 25 (1974), 1–61 | DOI | MR | Zbl

[4] Perrin-Riou B., “Points de Heegner et derivees de fonctions $L$ $p$-adiques”, C.R. Acad. Sci. Ser. 1, 303:5 (1986), 165–168 | MR | Zbl

[5] Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl

[6] Tate J., “The arithmetic of elliptic curves”, Invent. Math., 23 (1974), 179–206 | DOI | MR | Zbl

[7] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[8] Bashmakov M. I., “Kogomologii abelevykh mnogoobrazii nad chislovymi polyami”, UMN, 27:6 (1972), 25–66 | MR | Zbl

[9] Kokh X., Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR

[10] Manin Yu. I., “Krugovye polya i modulyarnye krivye”, UMN, 26:6 (1971), 7–71 | MR | Zbl

[11] Mazur B., “On the arithmetic of special values of $L$-functions”, Invent. Math., 55 (1979), 207–240 | DOI | MR | Zbl