On deformation of sheaves
Izvestiya. Mathematics, Tome 32 (1989) no. 3, pp. 663-668
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be an algebraic variety over an algebraically closed field $k$, $\mathscr F$ a sheaf on $X$, $A$ and $\widetilde A$ commutative Artinian $k$-algebras, $A=\widetilde A/I$, where $I$ is a one-dimensional ideal, $\mathscr E$ a deformation of $\mathscr F$ with base $\operatorname{Spec}A$, and $\operatorname{Ob}(\mathscr E,A,\widetilde A)\in\operatorname{Ext}^2(\mathscr F,\mathscr F)$ the obstruction to the extension of the deformation to $\operatorname{Spec}\widetilde A$. The author constructs natural trace maps $\operatorname{tr}^i\colon\operatorname{Ext}^i(\mathscr F,\mathscr F)\to H^i(\mathscr O_X)$ and proves that if $\operatorname{Pic}X$ is nonsingular then $\operatorname{tr}^2(\operatorname{Ob}(\mathscr E,A,\widetilde A))=0$. As a consequence, a universal deformation of a simple sheaf $\mathscr F$ on $X$ with nonsingular $\operatorname{Pic}X$ exists if the map $\operatorname{tr}^2$ is injective or, in the case $\operatorname{rk}\mathscr F\ne0$, and $\operatorname{char}k\nmid\operatorname{rk}\mathscr F$, $\operatorname{Ext}^2(\mathscr F,\mathscr F)=H^2(\mathscr O_X)$. Bibliography: 3 titles.
@article{IM2_1989_32_3_a10,
author = {I. V. Artamkin},
title = {On deformation of sheaves},
journal = {Izvestiya. Mathematics},
pages = {663--668},
year = {1989},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a10/}
}
I. V. Artamkin. On deformation of sheaves. Izvestiya. Mathematics, Tome 32 (1989) no. 3, pp. 663-668. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a10/
[1] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, t. 1, 2, Mir, M., 1982 | MR
[2] Maruyama M., “Moduli of stable sheaves, II”, J. Math. Kyoto Univ., 18 (1978), 557–614 | MR | Zbl
[3] Mukai Sh., “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl