On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II
Izvestiya. Mathematics, Tome 32 (1989) no. 3, pp. 449-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a continuation of Part I (Izv. Akad. Nauk SSSR Ser. Mat., 1987, v. 51, No 1, p. 16–43; Math. USSR-Izv. 30 (1988), 15–38). Let $L$ be a (semi) infinite nonselfintersecting continuous curve on a closed surface of nonpositive Euler characteristic and consider the behavior at “infinity” of the curve obtained by lifting $\widetilde L$ to the universal cover: either the Lobachevsky or the Euclidean plane. The possible types of this behavior for arbitrary $\widetilde L$ turn out to be the same as those for $L$ which are semitrajectories of $C^\infty$ flows. Questions concerning the approach of to infinity along a definite direction are again considered. An example is constructed in which all points of the absolute are limit points in $\widetilde L$. Bibliography: 12 titles.
@article{IM2_1989_32_3_a0,
     author = {D. V. Anosov},
     title = {On~the behavior in the {Euclidean} or {Lobachevsky} plane of trajectories that cover trajectories of flows on closed {surfaces.~II}},
     journal = {Izvestiya. Mathematics},
     pages = {449--474},
     year = {1989},
     volume = {32},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II
JO  - Izvestiya. Mathematics
PY  - 1989
SP  - 449
EP  - 474
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/
LA  - en
ID  - IM2_1989_32_3_a0
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II
%J Izvestiya. Mathematics
%D 1989
%P 449-474
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/
%G en
%F IM2_1989_32_3_a0
D. V. Anosov. On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II. Izvestiya. Mathematics, Tome 32 (1989) no. 3, pp. 449-474. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/

[1] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, 1”, Izv. AN SSSR. Ser. matem., 51:1 (1987), 16–43 | MR | Zbl

[2] Weil A., “On systems of curves on a ring-shaped surface”, J. Indian Math. Soc., 19:5 (1931), 109–112 ; 6, 113–114 | Zbl | Zbl

[3] Pupko V. I., “O nesamoperesekayuschikhsya krivykh na zamknutykh poverkhnostyakh”, Dokl. AN SSSR, 177:2 (1967), 272–274 | MR | Zbl

[4] Anosov D. V., “O beskonechnykh krivykh na tore i zamknutykh poverkhnostyakh otritsatelnoi eilerovoi kharakteristiki”, Optimizatsiya i differentsialnye igry, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 185, 1988, 30–53 | MR

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl

[6] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 90, 1967 | MR

[7] Markley N. G., “The Poincaré–Bendixson theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl

[8] Aranson S. Kh., “Traektorii na neorientiruemykh dvumernykh mnogoobraziyakh”, Matem. sb., 80:3 (1969), 314–333 | MR | Zbl

[9] Medvedev V. S., “O novom tipe bifurkatsii na mnogoobraziyakh”, Matem. sb., 113:3 (1980), 487–492 | MR | Zbl

[10] Aranson S. X., Grines V. Z., “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh sistem)”, Matem. sb., 90:3 (1973), 372–402 | MR | Zbl

[11] Maier A. G., “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12:1 (1943), 71–84 | MR

[12] Moise E. E., Geometric topology in dimension 2 and 3, Springer, N.Y., Hdlb., Berl., 1977 | MR | Zbl