On~the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~II
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 449-474
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a continuation of Part I (Izv. Akad. Nauk SSSR Ser. Mat., 1987, v. 51, № 1, p. 16–43; Math. USSR-Izv. 30 (1988), 15–38). Let $L$ be a (semi) infinite nonselfintersecting continuous curve on a closed surface of nonpositive Euler characteristic and consider the behavior at “infinity” of the curve obtained by lifting $\widetilde L$ to the universal cover: either the Lobachevsky or the Euclidean plane. The possible types of this behavior for arbitrary $\widetilde L$ turn out to be the same as those for $L$ which are semitrajectories of $C^\infty$ flows. Questions concerning the approach of to infinity along a definite direction are again considered. An example is constructed in which all points of the absolute are limit points in $\widetilde L$.
Bibliography: 12 titles.
@article{IM2_1989_32_3_a0,
author = {D. V. Anosov},
title = {On~the behavior in the {Euclidean} or {Lobachevsky} plane of trajectories that cover trajectories of flows on closed {surfaces.~II}},
journal = {Izvestiya. Mathematics },
pages = {449--474},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/}
}
TY - JOUR AU - D. V. Anosov TI - On~the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~II JO - Izvestiya. Mathematics PY - 1989 SP - 449 EP - 474 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/ LA - en ID - IM2_1989_32_3_a0 ER -
%0 Journal Article %A D. V. Anosov %T On~the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~II %J Izvestiya. Mathematics %D 1989 %P 449-474 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/ %G en %F IM2_1989_32_3_a0
D. V. Anosov. On~the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~II. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 449-474. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a0/