The group $SK_2$ for quaternion algebras
Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 313-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

The injectivity of the reduced norm homomorphism $K_2(D)\to K_2(F)$ for the quaternion algebra $D=\binom{a,b}F$, defined over a field $F$ of characteristic $\ne2$, is proved. It is proved that the group $K_2(D)$ can be identified with the subgroup of $K_2(F)$ consisting of all $u$ such that the product $u\cdot\{a,b\}$ is divisible by $2$ in the Milnor group $K_4^M(F)$. Bibliography: 21 titles.
@article{IM2_1989_32_2_a3,
     author = {A. S. Merkur'ev},
     title = {The group $SK_2$ for quaternion algebras},
     journal = {Izvestiya. Mathematics },
     pages = {313--337},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - The group $SK_2$ for quaternion algebras
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 313
EP  - 337
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/
LA  - en
ID  - IM2_1989_32_2_a3
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T The group $SK_2$ for quaternion algebras
%J Izvestiya. Mathematics 
%D 1989
%P 313-337
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/
%G en
%F IM2_1989_32_2_a3
A. S. Merkur'ev. The group $SK_2$ for quaternion algebras. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 313-337. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/

[1] Bass X., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[2] Merkurev A. S., “O gomomorfizme normennogo vycheta stepeni dva”, Dokl. AN SSSR, 261:3 (1981), 542–547 | MR

[3] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1046 | MR

[4] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[5] Platonov V. P., “Problema Tannaka–Artina i privedennaya $K$-teoriya”, Izv. AN SSSR. Ser. matem., 40:2 (1976), 227–261 | MR | Zbl

[6] Suslin A. A., “Algebraicheskaya $K$-teoriya”, Algebra. Topol. Geometriya, Itogi nauki i tekhn., 20, VINITI, M., 1982, 71–152 | MR

[7] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[8] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[9] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[10] Arason J. K., Pfister A., “Beweis des Krullschen Durchschnittsatzes für den Wittring”, Invent. Math., 12 (1971), 173–176 | DOI | MR | Zbl

[11] Draxl P. K., Skew fields, London Math. Soc. Lecture Note Series, 81, University Press, Cambridge, 1982 | MR

[12] Knebusch M., Scharlau M., Algebraic theory of quadratic forms, DMV Seminar, Birkhäuser, 1980 | MR | Zbl

[13] Lam T. Y., The algebraic theory of quadratic forms, Mathematics Lecture Note Series, Benjamin, Reading, Massachusetts, 1973 | MR | Zbl

[14] Milnor J., “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9:4 (1970), 318–344 | DOI | MR | Zbl

[15] Quillen D., “Higher $K$-theory, I”, Lecture Notes Math., 341, 1973, 77–139

[16] Rehmann D., “Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers”, J. Reine Angew. Math., 301 (1978), 77–104 | MR | Zbl

[17] Rehmann D., Stuhler U., “On $K_2$ of finite dimentional algebras over arithmetical fields”, Invent. Math., 50 (1978), 75–90 | DOI | MR | Zbl

[18] Sherman C., “$K$-cohomology of regular schemes”, Comm. Algebra, 7:10 (1979), 999–1027 | DOI | MR | Zbl

[19] Sherman C., “Some theorems on the $K$-theory of coherent sheaves”, Comm. Algebra, 7:14 (1979), 1489–1508 | DOI | MR | Zbl

[20] Swan R., “$K$-theory of quadric hypersurfaces”, Ann. of Math., 122:1 (1985), 113–154 | DOI | MR

[21] Tate J., “Relations between $K_2$ and Galois cohomology”, Invent. Math., 36 (1976), 257–274 | DOI | MR | Zbl