The group $SK_2$ for quaternion algebras
Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 313-337

Voir la notice de l'article provenant de la source Math-Net.Ru

The injectivity of the reduced norm homomorphism $K_2(D)\to K_2(F)$ for the quaternion algebra $D=\binom{a,b}F$, defined over a field $F$ of characteristic $\ne2$, is proved. It is proved that the group $K_2(D)$ can be identified with the subgroup of $K_2(F)$ consisting of all $u$ such that the product $u\cdot\{a,b\}$ is divisible by $2$ in the Milnor group $K_4^M(F)$. Bibliography: 21 titles.
@article{IM2_1989_32_2_a3,
     author = {A. S. Merkur'ev},
     title = {The group $SK_2$ for quaternion algebras},
     journal = {Izvestiya. Mathematics },
     pages = {313--337},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - The group $SK_2$ for quaternion algebras
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 313
EP  - 337
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/
LA  - en
ID  - IM2_1989_32_2_a3
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T The group $SK_2$ for quaternion algebras
%J Izvestiya. Mathematics 
%D 1989
%P 313-337
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/
%G en
%F IM2_1989_32_2_a3
A. S. Merkur'ev. The group $SK_2$ for quaternion algebras. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 313-337. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/