The group $SK_2$ for quaternion algebras
Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 313-337
Voir la notice de l'article provenant de la source Math-Net.Ru
The injectivity of the reduced norm homomorphism $K_2(D)\to K_2(F)$ for the quaternion algebra $D=\binom{a,b}F$, defined over a field $F$ of characteristic $\ne2$, is proved. It is proved that the group $K_2(D)$ can be identified with the subgroup of $K_2(F)$ consisting of all $u$ such that the product $u\cdot\{a,b\}$ is divisible by $2$ in the Milnor group $K_4^M(F)$.
Bibliography: 21 titles.
@article{IM2_1989_32_2_a3,
author = {A. S. Merkur'ev},
title = {The group $SK_2$ for quaternion algebras},
journal = {Izvestiya. Mathematics },
pages = {313--337},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/}
}
A. S. Merkur'ev. The group $SK_2$ for quaternion algebras. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 313-337. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a3/