On the derived category and $K$-functor of coherent sheaves on intersections of quadrics
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 191-204

Voir la notice de l'article provenant de la source Math-Net.Ru

A graded Clifford algebra connected with the complete intersection of several quadrics is considered. In terms of modules over this algebra, a description is given of the derived category of coherent sheaves and the Quillen $K$-functor of the intersection of quadrics, which generalizes the results of I. N. Bernshtein, I. M. Gel'fand, S. I. Gel'fand, and R. G. Swan. Here, ramified two-sheeted coverings of the parameter space arise in a natural way, the consideration of which is traditional for intersections of two or three quadrics. Bibliography: 12 titles.
@article{IM2_1989_32_1_a9,
     author = {M. M. Kapranov},
     title = {On the derived category and $K$-functor of coherent sheaves on intersections of quadrics},
     journal = {Izvestiya. Mathematics },
     pages = {191--204},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/}
}
TY  - JOUR
AU  - M. M. Kapranov
TI  - On the derived category and $K$-functor of coherent sheaves on intersections of quadrics
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 191
EP  - 204
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/
LA  - en
ID  - IM2_1989_32_1_a9
ER  - 
%0 Journal Article
%A M. M. Kapranov
%T On the derived category and $K$-functor of coherent sheaves on intersections of quadrics
%J Izvestiya. Mathematics 
%D 1989
%P 191-204
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/
%G en
%F IM2_1989_32_1_a9
M. M. Kapranov. On the derived category and $K$-functor of coherent sheaves on intersections of quadrics. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 191-204. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/