On the derived category and $K$-functor of coherent sheaves on intersections of quadrics
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 191-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graded Clifford algebra connected with the complete intersection of several quadrics is considered. In terms of modules over this algebra, a description is given of the derived category of coherent sheaves and the Quillen $K$-functor of the intersection of quadrics, which generalizes the results of I. N. Bernshtein, I. M. Gel'fand, S. I. Gel'fand, and R. G. Swan. Here, ramified two-sheeted coverings of the parameter space arise in a natural way, the consideration of which is traditional for intersections of two or three quadrics. Bibliography: 12 titles.
@article{IM2_1989_32_1_a9,
     author = {M. M. Kapranov},
     title = {On the derived category and $K$-functor of coherent sheaves on intersections of quadrics},
     journal = {Izvestiya. Mathematics },
     pages = {191--204},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/}
}
TY  - JOUR
AU  - M. M. Kapranov
TI  - On the derived category and $K$-functor of coherent sheaves on intersections of quadrics
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 191
EP  - 204
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/
LA  - en
ID  - IM2_1989_32_1_a9
ER  - 
%0 Journal Article
%A M. M. Kapranov
%T On the derived category and $K$-functor of coherent sheaves on intersections of quadrics
%J Izvestiya. Mathematics 
%D 1989
%P 191-204
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/
%G en
%F IM2_1989_32_1_a9
M. M. Kapranov. On the derived category and $K$-functor of coherent sheaves on intersections of quadrics. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 191-204. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a9/

[1] Beilinson A. A., “Kogerentnye puchki na $P^n$ i problemy lineinoi algebry”, Funkts. analiz, 12:3 (1978), 68–69 | MR | Zbl

[2] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Algebraicheskie rassloeniya na $P^n$ i zadachi lineinoi algebry”, Funkts. analiz, 12:3 (1978), 66–67 | MR

[3] Gabriel L., Tsisman M., Kategorii chastnykh i teoriya gomotopii, Mir, M., 1971 | MR | Zbl

[4] Tyurin A. N., “O peresechenii kvadrik”, UMN, 30:6 (1975), 51–99 | MR | Zbl

[5] Gillet H., “Riemann–Roch theorem in higher algebraic $K$-theory”, Adv. in Math., 40:3 (1981), 203–289 | DOI | MR | Zbl

[6] Hartshorne R., Residues and duality, Lect. Notes in Math., 20, 1966 | MR | Zbl

[7] Mukai S., “Duality between $D(X)$ and $D(\hat{(X)})$”, Nagoya Math. J., 81 (1981), 153–175 | MR | Zbl

[8] Hinich V. A., Schechtman V. V., “Geometry of a category of complexes and algebraic $K$-theory”, Duke Math. J., 52:2 (1985), 399–430 | DOI | MR | Zbl

[9] Quillen D., “Higher algebraic $K$-theory”, Lect. Notes in Math., no. 341, 1973, 85–147 | MR | Zbl

[10] Swan R. G., “$K$-theory of quadric hypersurfaces”, Ann. Math., 121:1 (1985), 113–153 | DOI | MR

[11] Tate J., “Homology of Noetherian rings and local rings”, Illinois J. Math., 1:1 (1957), 14–27 | MR | Zbl

[12] Verdier J.-L., “Categories derivées”, Lect. Notes in Math., 569, 1977, 262–311 | MR | Zbl