On~free actions of zero-dimensional compact groups
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 217-232

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a free action of an arbitrary zero-dimensional compact group on every Menger manifold. It is shown that in the case of a finite group $G$ such a $G$-action on the $n$-dimensional Menger compactum is unique and universal in the class of free $G$-actions on $n$-dimensional compacta. Bibliography: 22 titles.
@article{IM2_1989_32_1_a11,
     author = {A. N. Dranishnikov},
     title = {On~free actions of zero-dimensional compact groups},
     journal = {Izvestiya. Mathematics },
     pages = {217--232},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On~free actions of zero-dimensional compact groups
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 217
EP  - 232
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/
LA  - en
ID  - IM2_1989_32_1_a11
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On~free actions of zero-dimensional compact groups
%J Izvestiya. Mathematics 
%D 1989
%P 217-232
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/
%G en
%F IM2_1989_32_1_a11
A. N. Dranishnikov. On~free actions of zero-dimensional compact groups. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 217-232. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/