On~free actions of zero-dimensional compact groups
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 217-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a free action of an arbitrary zero-dimensional compact group on every Menger manifold. It is shown that in the case of a finite group $G$ such a $G$-action on the $n$-dimensional Menger compactum is unique and universal in the class of free $G$-actions on $n$-dimensional compacta. Bibliography: 22 titles.
@article{IM2_1989_32_1_a11,
     author = {A. N. Dranishnikov},
     title = {On~free actions of zero-dimensional compact groups},
     journal = {Izvestiya. Mathematics },
     pages = {217--232},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On~free actions of zero-dimensional compact groups
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 217
EP  - 232
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/
LA  - en
ID  - IM2_1989_32_1_a11
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On~free actions of zero-dimensional compact groups
%J Izvestiya. Mathematics 
%D 1989
%P 217-232
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/
%G en
%F IM2_1989_32_1_a11
A. N. Dranishnikov. On~free actions of zero-dimensional compact groups. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 217-232. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/

[1] Williams R. F., “The construction of certain $0$-dimensional transformation groups”, Trans. Amer. Math. Soc., 129:1 (1967), 140–156 | DOI | MR | Zbl

[2] Smith P. A., Periodic and nearly periodic transformations, Lectures in Topology, Univ. of Michigan Press, Ann. Arbor, 1941 | MR | Zbl

[3] Yang C. T., “$p$-Adic transformation groups”, Michigan Math. J., 7 (1960), 201–218 | DOI | MR | Zbl

[4] Bredon G. E., Raymond F., Williams R. F., “$p$-Adic transformation groups”, Trans. Amer. Math. Soc., 99:3 (1961), 488–498 | DOI | MR | Zbl

[5] Bestvina M., Characterization $k$-dimensional universal Menger compacta, Dissertation on Ph. D. University of Tennesse, Knoxville, 1984

[6] Bestvina M., “Characterizing $k4$-dimensnonal universal Menger compacta”, Bull. Amer. Math. Soc., 11:2 (1984), 369–370 | DOI | MR | Zbl

[7] Mankrs Dzh., Elementarnaya differentsialnaya topologiya; Милнор Дж. и Сташеф Дж., Характеристические классы, Мир, М., 1979 | MR | Zbl

[8] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[9] Pasynkov B. A., “Chastichnye topologicheskie proizvedeniya”, Tr. Mosk. matem. o-va, 13, 1965, 136–244 | MR

[10] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[11] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya, povyshayuschie razmernost”, UMN, 39:5 (1984), 55–95 | MR | Zbl

[12] Hurewicz W., “Homotopic, Homologic, und lokaler Zusammenhang”, Fund. Math., 25 (1935), 467–485 | Zbl

[13] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[14] Stinrod N., Topologiya kosykh proizvedenii, IL, M., 1953

[15] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[16] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1975

[17] Dranishnikov A. N., “Universalnye mengerovskie kompakty i universalnye otobrazheniya”, Matem. sb., 129:1 (1986), 121–139 | MR

[18] Boltyanskii V. G., “O razmernoi polnotsennosti kompaktov”, Dokl. AN SSSR, 67:5 (1949), 773–777 | MR

[19] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[20] Borel A., Seminar on transformation groups, Annals of Mathematics Studies, 46, Princeton University Press, 1960 | MR | Zbl

[21] West J. E., “Mapping Hilbert cube manifolds to ANR's. A solution of a conjecture of Borsuk”, Ann. Math. Ser. 2, 106:1 (1977), 1–18 | DOI | MR | Zbl

[22] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, UMN, 23:5 (1968), 3–49 | MR