On~free actions of zero-dimensional compact groups
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 217-232
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists a free action of an arbitrary zero-dimensional compact group on every Menger manifold. It is shown that in the case of a finite group $G$ such a $G$-action on the $n$-dimensional Menger compactum is unique and universal in the class of free $G$-actions on $n$-dimensional compacta.
Bibliography: 22 titles.
@article{IM2_1989_32_1_a11,
author = {A. N. Dranishnikov},
title = {On~free actions of zero-dimensional compact groups},
journal = {Izvestiya. Mathematics },
pages = {217--232},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/}
}
A. N. Dranishnikov. On~free actions of zero-dimensional compact groups. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 217-232. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a11/