Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1988_31_3_a10, author = {O. I. Mokhov}, title = {On the {Hamiltonian} property of an arbitrary evolution system on the set of stationary points of its integral}, journal = {Izvestiya. Mathematics }, pages = {657--664}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {1988}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/} }
TY - JOUR AU - O. I. Mokhov TI - On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral JO - Izvestiya. Mathematics PY - 1988 SP - 657 EP - 664 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/ LA - en ID - IM2_1988_31_3_a10 ER -
O. I. Mokhov. On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 657-664. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/
[1] Novikov S. P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz i ego prilozh., 8 (1974), 54–66 | MR | Zbl
[2] Bogoyavlenskii O. I., Novikov S. P., “O svyazi gamiltonovykh formalizmov statsionarnykh i nestatsionarnykh zadach”, Funkts. analiz i ego prilozh., 10:1 (1976), 9–13 | MR | Zbl
[3] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi matem. nauk, 31:1 (1976), 55–136 | MR | Zbl
[4] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[5] Gelfand I. M., Dikii L. A., “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego prilozh., 10:4 (1976), 13–29 | MR
[6] Gelfand I. M., Dikii L. A., “Rezolventa i gamiltonovy sistemy”, Funkts. analiz i ego prilozh., 11:2 (1977), 11–27 | MR
[7] Veselov A. P., “O gamiltonovom formalizme dlya uravnenii Novikova–Krichevera kommutativnosti dvukh operatorov”, Funkts. analiz i ego prilozh., 13:1 (1979), 1–7 | MR | Zbl
[8] Gelfand I. M., Manin Yu. I., Shubin M. A., “Skobki Puassona i yadro variatsionnoi proizvodnoi v formalnom variatsionnom ischislenii”, Funkts. analiz i ego prilozh., 10:4 (1976), 30–34 | MR
[9] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, VINITI, 1978, 5–152 | MR
[10] Mokhov O. I., “Gamiltonovost evolyutsionnogo potoka na mnozhestve statsionarnykh tochek ego integrala”, Uspekhi matem. nauk, 39:4 (1984), 173–174 | MR | Zbl
[11] Lax P. D., “Periodic solutions of the KdV equation”, Lectures in Appl. Math., 15, 1974, 85–96 | MR
[12] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1986 | MR
[13] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR
[14] Magri F., “A simple model of the integrable Hamiltonian equation”, Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[15] Mokhov O. I., “Lokalnye skobki Puassona tretego poryadka”, Uspekhi matem. nauk, 40:5 (1985), 257–258 | MR | Zbl
[16] Kupershmidt B. A., Wilson G., “Modifying Lax equations and the second hamiltonian structure”, Invent Math., 62:3 (1981), 403–436 | DOI | MR