On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 657-664

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bogoyavlenskii–Novikov principle concerning the connection between stationary and nonstationary problems is generalized. It is proved that an arbitrary evolution system is Hamiltonian on the set of stationary points of its local integral. Bibliography: 16 titles.
@article{IM2_1988_31_3_a10,
     author = {O. I. Mokhov},
     title = {On the {Hamiltonian} property of an arbitrary evolution system on the set of stationary points of its integral},
     journal = {Izvestiya. Mathematics },
     pages = {657--664},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 657
EP  - 664
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/
LA  - en
ID  - IM2_1988_31_3_a10
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral
%J Izvestiya. Mathematics 
%D 1988
%P 657-664
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/
%G en
%F IM2_1988_31_3_a10
O. I. Mokhov. On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 657-664. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a10/