Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1988_31_3_a0, author = {O. I. Bogoyavlenskii}, title = {Integrable dynamical systems associated with the {KdV} equation}, journal = {Izvestiya. Mathematics }, pages = {435--454}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {1988}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a0/} }
O. I. Bogoyavlenskii. Integrable dynamical systems associated with the KdV equation. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 435-454. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a0/
[1] Moser J., “Three Integrable Hamiltonian Systems Connected with Isospectral Deformations”, Adv. in Math., 16 (1975), 197–220 | DOI | MR | Zbl
[2] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 737–767 | MR
[3] Ablowitz N. J., Kaup D. J., Newell A. C., Segur H., “Nonlinear evolution equation of physical significance”, Phys. Rev. Letters, 32 (1973), 125–130 | DOI | MR
[4] Lax P., “Almost periodic behavior of nonlinear waves”, Adv. in Math., 16 (1975), 368–379 | DOI | MR | Zbl
[5] Kac M., van Moerbeke P., “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. in Math., 16 (1975), 160–169 | DOI | MR | Zbl
[6] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR
[7] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. in Math. Phys., 51 (1976), 201–209 | DOI | MR
[8] Toda M., Theory of nonlinear lattices, Springer-Verlag, Berlin, New York, Heidelberg, 1981 | MR | Zbl
[9] Burbaki H., Gruppy i algebry Li, eds. A. I. Kostrikin, Mir, M., 1972 ; | MR | Zbl