One-dimensional singular integral equations with coefficients vanishing on countable sets
Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 245-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the principle of normalization of linear operators a general method is constructed for investigating one-dimensional singular integral equations in the space $L_p(\Gamma,\rho)$ in the case when their coefficients are degenerate on countable sets. In particular, zero sets satisfying the Carleson $\delta$-condition are studied, along with the images of such sets under linear fractional transformations. Bibliography: 38 titles.
@article{IM2_1988_31_2_a1,
     author = {V. B. Dybin},
     title = {One-dimensional singular integral equations with coefficients vanishing on countable sets},
     journal = {Izvestiya. Mathematics },
     pages = {245--271},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a1/}
}
TY  - JOUR
AU  - V. B. Dybin
TI  - One-dimensional singular integral equations with coefficients vanishing on countable sets
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 245
EP  - 271
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a1/
LA  - en
ID  - IM2_1988_31_2_a1
ER  - 
%0 Journal Article
%A V. B. Dybin
%T One-dimensional singular integral equations with coefficients vanishing on countable sets
%J Izvestiya. Mathematics 
%D 1988
%P 245-271
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a1/
%G en
%F IM2_1988_31_2_a1
V. B. Dybin. One-dimensional singular integral equations with coefficients vanishing on countable sets. Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 245-271. http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a1/

[1] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[2] Dybin V. B., “Normalizatsiya singulyarnogo integralnogo uravneniya v isklyuchitelnom sluchae”, Matem. analiz i ego prilozh., VI, Rostov n/D., 1974, 45–61

[3] Dybin V. B., “Normalizatsiya operatora Vinera–Khopfa”, Dokl. AN SSSR, 191:4 (1970), 759–762 | MR | Zbl

[4] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[5] Dybin V. B., Gaponenko V. N., “Kraevaya zadacha Rimana s kvazi-periodicheskim vyrozhdeniem koeffitsientov”, Dokl. AN SSSR, 212:5 (1973), 1046–1049 | MR | Zbl

[6] Zhuravleva M. I., “Neodnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom so schetnym mnozhestvom nulei i polyusov ee koeffitsienta”, Dokl. AN SSSR, 214:4 (1974), 755–757 | Zbl

[7] Rogozin S. V., “Neodnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom v isklyuchitelnom sluchae dlya poluploskosti”, Vestn. Belorus. un-ta. Ser. 1, 1983, no. 2, 60–62 | MR | Zbl

[8] Dybin V. B., “The Rieman boundary value problem on a closed contour with an infinite number of zeros in its coefficient”, Problem und Methoden der Mathematischen Physik (Karl-Marx-Stadt, 1983. Leipzig), Teubner-Texte zur Mathematik, 63, Teubner, Leipzig, 1984, 27–31 | MR | Zbl

[9] Dybin V. B., “Korrektnaya postanovka zadachi Rimana v sluchae beskonechnogo chisla nulei u ee koeffitsienta”, Dokl. AN SSSR, 280:4 (1985), 785–788 | MR | Zbl

[10] Hruščev S. V., Nikol'skii N. K., Pavlov B. S., “Unconditional Bases of Exponentials and of Reproducing Kernels”, Lecture Notes in Math., 864, Springer, Berlin, 1981, 214–335 | MR

[11] Nikolskii N. K., Operatory Gankelya i Teplitsa. Spektralnaya teoriya, Preprinty No R-1-82, No R-2-82, No R-5-82, LOMI, L., 1982, 172 | MR

[12] Dybin V. B., “Korrektnye postanovki kraevoi zadachi Rimana pri standartnykh pochti periodicheskikh razryvakh u ee koeffitsienta”, Math. Nachr., 122 (1985), 301–338 | DOI | MR | Zbl

[13] Grudskii S. M., Dybin V. B., “Kraevaya zadacha Rimana s razryvami pochti-periodicheskogo tipa u ee koeffitsienta”, Dokl. AN SSSR, 237:1 (1977), 21–24 | MR | Zbl

[14] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh prilozheniyam”, Itogi nauki i tekhniki. Matem. analiz, 21, 1983, 42–129 | MR

[15] Dzhrbashyan M. M., “Biortogonalnye sistemy ratsionalnykh funktsii i nailuchshee priblizhenie yadra Koshi na veschestvennoi osi”, Matem. sb., 95(137):3(11) (1974), 418–444 | Zbl

[16] Levin B. Ya., Tselye funktsii, Mosk. gos. un-t im. M. V. Lomonosova, M., 1971 | Zbl

[17] Levin B. Ya., “Interpolyatsiya tselymi funktsiyami eksponentsialnogo tipa”, Matem. fizika, funkts. analiz, 1969, no. 1, 136–146, FTINT AN USSR, Kharkov

[18] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 657–702 | MR | Zbl

[19] Pavlov B. S., “Bazisnost sistemy eksponent i uslovie Makenkhoupta”, Dokl. AN SSSR, 247:1 (1979), 37–40 | MR | Zbl

[20] Gaponenko V. N., “Interpolyatsionnaya formula Lagranzha dlya odnogo klassa tselykh funktsii eksponentsialnogo tipa, integriruemykh s vesom”, Izv. SKNTs VSh Estestv. nauki, 1982, no. 1, 17–19 | MR | Zbl

[21] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl

[22] Simonenko I. B., “Ustoichivost vesovykh otnositelno singulyarnogo integrala Koshi svoistv funktsii”, Matem. zametki, 33:3 (1983), 409–416 | MR | Zbl

[23] Tumarkin G. Ts., “Razlozhenie analiticheskikh funktsii v ryad po ratsionalnym drobyam s zadannym mnozhestvom polyusov”, Izv. AN Arm. SSR. Ser. matem., 4:1 (1961), 9–31 | MR

[24] Drzhbashyan M. M., “Razlozhenie po sistemam ratsionalnykh funktsii s fiksirovannymi polyusami”, Izv. AN Arm. SSR. Ser. matem., 2:1 (1967), 3–51

[25] Airapetyan G. M., “O bazise ratsionalnykh funktsii v podprostranstvakh klassov Khardi $H_p$ ($1

\infty$)”, Izv. AN Arm. SSR. Ser. matem., VIII:6 (1973), 429–450 | MR

[26] Dybin V. B., “Singulyarnye integralnye uravneniya so schetnym mnozhestvom pochti-periodicheskikh razryvov u ikh koeffitsientov”, Tr. Tbilissk. matem. in-ta AN Gr. SSR, 82, 1986, 90–105 | MR | Zbl

[27] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., L., 1950

[28] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 7, 1975, 5–162

[29] Simonenko I. B., “O globalnoi i lokalnoi faktorizuemosti izmerimoi matritsy-funktsii i neterovosti porozhdennogo ego singulyarnogo operatora”, Izv. vuzov. Matem., 1983, no. 4(251), 81–87 | MR | Zbl

[30] Rochberg R., “Toeplitz operators on weighted $H^p$ spaces”, Indiana Univ. Math. J., 21:2 (1977), 291–298 | DOI | MR

[31] Rosenblum M., “Summability of Fourier series in $L_p(d\mu)$”, Trans. Amer. Math. Soc., 165 (1962), 32–42 | DOI | MR

[32] Dynkin E. M., “Otsenki analiticheskikh funktsii v zhordanovykh oblastyakh”, Zap. nauchn. sem. LOMI AN SSSR, 73, 1977, 70–90 | MR

[33] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal functions”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[34] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980, 383 pp. | MR

[35] Grigoryan Sh. A., “Ob odnom svoistve funktsii iz $H^p$ ($0

\infty$) v poluploskosti”, Izv. AN Arm. SSR. Ser. matem., XII:5 (1977), 335–339 | MR

[36] Krupnik N. Ya., Banakhovy algebry s simvolom i singulyarnye integralnye operatory, Shtiintsa, Kishinev, 1984, 138 pp. | MR | Zbl

[37] Paatashvili V. A., Razryvnaya granichnaya zadacha lineinogo sopryazheniya i svyazannye s neyu singulyarnye integralnye uravneniya, Avtoreferat diss., Tbilisi, 1984, 28 pp.

[38] Dybin V. B., “Ob uravnenii Vinera–Khopfa s simvolom, annuliruyuschimsya na schetnom mnozhestve”, Differentsialnye, integralnye uravneniya i kompleksnyi analiz, Kalmytskii un-t, Elista, 1986, 59–81 | MR