The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 193-207

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete asymptotic description is given for the general real solution of the second Painlevé equation, $u_{xx}-xu+2u^3=0$, including explicit formulas connecting the asymptotics as $x\to\pm\infty$. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method. Bibliography: 23 titles.
@article{IM2_1988_31_1_a7,
     author = {A. R. Its and A. A. Kapaev},
     title = {The~method of isomonodromy deformations and connection formulas for the second {Painlev\'e} transcendent},
     journal = {Izvestiya. Mathematics },
     pages = {193--207},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/}
}
TY  - JOUR
AU  - A. R. Its
AU  - A. A. Kapaev
TI  - The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 193
EP  - 207
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/
LA  - en
ID  - IM2_1988_31_1_a7
ER  - 
%0 Journal Article
%A A. R. Its
%A A. A. Kapaev
%T The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
%J Izvestiya. Mathematics 
%D 1988
%P 193-207
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/
%G en
%F IM2_1988_31_1_a7
A. R. Its; A. A. Kapaev. The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 193-207. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/