The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 193-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete asymptotic description is given for the general real solution of the second Painlevé equation, $u_{xx}-xu+2u^3=0$, including explicit formulas connecting the asymptotics as $x\to\pm\infty$. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method. Bibliography: 23 titles.
@article{IM2_1988_31_1_a7,
     author = {A. R. Its and A. A. Kapaev},
     title = {The~method of isomonodromy deformations and connection formulas for the second {Painlev\'e} transcendent},
     journal = {Izvestiya. Mathematics },
     pages = {193--207},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/}
}
TY  - JOUR
AU  - A. R. Its
AU  - A. A. Kapaev
TI  - The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 193
EP  - 207
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/
LA  - en
ID  - IM2_1988_31_1_a7
ER  - 
%0 Journal Article
%A A. R. Its
%A A. A. Kapaev
%T The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
%J Izvestiya. Mathematics 
%D 1988
%P 193-207
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/
%G en
%F IM2_1988_31_1_a7
A. R. Its; A. A. Kapaev. The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 193-207. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/

[2] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, M., L., 1950

[3] Erugin N. P., “Teoriya podvizhnykh osobykh tochek uravneniya vtorogo poryadka”, Differents. uravn., 12:4 (1976), 579–598 | MR | Zbl

[4] Bordag L. A., Painleve'equations and their connection with nonlinear evolution equations, Preprint JINR, E5-80-477, 1980

[5] Fokas A. S., Ablowitz M. J., “On a unified approach to transformations and elementary solutions of Painleve'equations”, J. Math. Phys., 23:11 (1982), 2033–2042 | DOI | MR | Zbl

[6] McCoy B. M., Tracy C. A., Wu T. T., “Painleve'functions of the third kind”, J. Math. Phys., 18:5 (1977), 1058–1092 | DOI | MR | Zbl

[7] Creamer D. B., Thacker H. B., Wilkinson D., “Some exact results for two-point functions of an integrable quantum field theory”, Phys. Rev. D., 23:12 (1981), 3081–3084 | DOI | MR

[8] Gromak V. I., Tsegelnik V. B., “Nelineinye dvumernye modeli teorii polya i uravneniya Penleve”, Teor. matem. fizika, 55:2 (1983), 189–196 | MR | Zbl

[9] Ablowitz M. J., Ramani A., Segiir H., “A connection between nonlinear evolution equations and ordinary differential equations of $P$-type”, J. Math. Phys., 21:4 (1980), 715–721 | DOI | MR | Zbl

[10] Manakov S. V., “O rasprostranenii impulsa v dlinnom lazernom usilitele”, Pisma v ZhETF, 35:5 (1982), 193–195

[11] Zakharov V. E., Kuznetsov E. A., Shusher S. L., “O kvaziklassicheskom rezhime trekhmernogo volnovogo kollapsa”, Pisma v ZhETF, 41:3 (1985), 125–127

[12] Tajiri M., “On reductions to the Second Painleve'equation and $N$-soliton solutions of the two and three dimensional nonlinear Klein-Gordon equations”, J. Phys. Soc. Japan., 53 (1984), 1–4 | DOI | MR

[13] Flaschka H., Newell A. C., “Monodromy and spectrum preserving deformations”, Commun. Math. Phys., 76:67 (1980), 65–116 | DOI | MR | Zbl

[14] Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, Preprint No 319, RIMS, Kyoto, 1980

[15] Novokshënov V. Yu., “Metod izomonodromnoi deformatsii i asimptotika tretego transtsendenta Penleve”, Funkts. analiz i ego prilozh., 18:3 (1984), 90–91 | MR | Zbl

[16] Novokshënov V. Yu., Suleimanov B. I., “Metod izomonodromnykh deformatsii i asimptotika vtorogo i tretego transtsendentov Penleve”, Uspekhi matem. nauk, 39:4 (1984), 114–115

[17] Ablowitz M. J., Segur H., “Exact linearization of a Painleve'transcendent”, Phys. Rev. Lett., 38 (1977), 1103 | DOI | MR

[18] Abdullaev A. S., “K teorii vtorogo uravneniya Penleve”, Dokl. AN SSSR, 273:5 (1983), 1033–1036 | MR | Zbl

[19] Fokas A. S., Ablowitz M. J., “On the initial value problem of the Second Painleve transcendent”, Commun. Math. Phys., 91 (1983), 381–403 | DOI | MR | Zbl

[20] Its A. R., ““Izomonodromnye” resheniya uravneniya nulevoi krivizny”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 530–565 | MR | Zbl

[21] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63, 301–321 | DOI | MR | Zbl

[22] Garnier M. R., “Sur des equations différentielles du troisième ordre dont l'intégrale generale est uniforme et sur une classe d'equations nouvelles dordre supérieur dontl'intégrale générale a ses points critiques fixes”, Ann. Sci. Ecole Norm. Sup., 29 (1912), 1–126 | MR | Zbl

[23] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1973

[24] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl