The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 193-207
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete asymptotic description is given for the general real solution of the second Painlevé equation, $u_{xx}-xu+2u^3=0$, including explicit formulas connecting the asymptotics as $x\to\pm\infty$. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method.
Bibliography: 23 titles.
@article{IM2_1988_31_1_a7,
author = {A. R. Its and A. A. Kapaev},
title = {The~method of isomonodromy deformations and connection formulas for the second {Painlev\'e} transcendent},
journal = {Izvestiya. Mathematics },
pages = {193--207},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/}
}
TY - JOUR AU - A. R. Its AU - A. A. Kapaev TI - The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent JO - Izvestiya. Mathematics PY - 1988 SP - 193 EP - 207 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/ LA - en ID - IM2_1988_31_1_a7 ER -
A. R. Its; A. A. Kapaev. The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 193-207. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a7/