The distribution of numbers representable as a~sum of two squares
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 171-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains two theorems. The first concerns the distribution of the differences between successive numbers representable as a sum of two perfect squares, and the second concerns the number of such numbers in short intervals. The paper is a continuation of work by C. Hooley, Y. Motohashi, and the author. Bibliography: 19 titles.
@article{IM2_1988_31_1_a6,
     author = {V. A. Plaksin},
     title = {The distribution of numbers representable as a~sum of two squares},
     journal = {Izvestiya. Mathematics },
     pages = {171--191},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a6/}
}
TY  - JOUR
AU  - V. A. Plaksin
TI  - The distribution of numbers representable as a~sum of two squares
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 171
EP  - 191
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a6/
LA  - en
ID  - IM2_1988_31_1_a6
ER  - 
%0 Journal Article
%A V. A. Plaksin
%T The distribution of numbers representable as a~sum of two squares
%J Izvestiya. Mathematics 
%D 1988
%P 171-191
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a6/
%G en
%F IM2_1988_31_1_a6
V. A. Plaksin. The distribution of numbers representable as a~sum of two squares. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 171-191. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a6/

[1] Vinogradov A. I., “O chislakh s malymi prostymi delitelyami”, Dokl. AN SSSR, 109:4 (1956), 683–686 | MR | Zbl

[2] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR

[3] Ismailov D., “Ob asimptotike predstavleniya chisel kak raznosti dvukh proizvedenii”, Dokl. AN TadzhSSR, 22:2 (1979), 75–79 | MR

[4] Plaksin V. A., “Kolichestvo chisel, predstavimykh summoi dvukh kvadratov tselykh, na malykh intervalakh”, Izv. AN SSSR. Ser. matem., 50:1 (1986), 67–78 | MR | Zbl

[5] Selberg A., Metody resheta. Problemy analiticheskoi teorii chisel, Mir, M., 1975, 43–107

[6] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[7] Erdős P., “The difference of consecutive primes”, Duke Math. J., 6:2 (1940), 438–441 | DOI | MR | Zbl

[8] Friedlander J. B., “Sifting short intervals”, Math. Proc. Camb. Phil. Soc., 91:1 (1982), 9–15 | DOI | MR | Zbl

[9] Friedlander J. B., “Sifting short intervals, II”, Math. Proc. Camb. Phil. Soc., 92:3 (1982), 381–384 | DOI | MR | Zbl

[10] Friedlander J. B., “Moment of sifted sequences”, Math. An., 267:1 (1984), 100–106 | MR

[11] Harman G., “On the distribution of $\alpha p$ modulo one”, J. London Math. Soc., 27:1 (1983), 9–18 | DOI | MR | Zbl

[12] Heath-Broun D. R., “The fourth power moment of the Riemann zeta function”, Proc. London Math. Sec. Ser. 3, 38 (1979), 385–422 | DOI | MR

[13] Heath-Broun D. R., “Gaps between consecutive primes, and the pair correlation of zeros of the zeta-function”, Acta Arithm., 41:1 (1982), 85–99 | MR

[14] Hooley C., “On the intervals between number that are sums of two squares”, Acta Math., 127:3,4 (1971), 279–297 | DOI | MR | Zbl

[15] Hooley C., “On the intervals between numbers that are sums of two squares, III”, J. Reine und Angew. Math., 267 (1974), 207–218 | MR | Zbl

[16] Landau E., “Über die Einteilung der positiven Zahlen nach vier Klassen nach der Mindestzahl der zu ihrer addition Zusammensetzung erforderlichen Quadrate, III”, Arch. Math. und Phys., 13:4 (1908), 305–312 | Zbl

[17] Motohashi Y., “On the number of integers which are sums of two squares”, Acta Arithm., 23:4 (1973), 401–412 | MR | Zbl

[18] Ramachandra K., “Some problems of analytic number theory”, Acta Arithm., 31:4 (1976), 313–324 | MR | Zbl

[19] Richards J., “On the gaps between number which are sums of two squares”, Adv. in Math., 46 (1982), 1–2 | DOI | MR | Zbl