Some constructions of integrable dynamical systems
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 47-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

New constructions of integrable dynamical systems are found that admit representation as Lax matrix equations. A countable set of integrable systems is constructed which in the continuous limit turn into the Korteweg–de Vries equation. For an arbitrary space $\mathscr M$ with finite measure $\mu$ and measure-preserving mapping $\alpha\colon\mathscr M\to\mathscr M$ differential equations are constructed on the space of measurable functions on $\mathscr M$. Here differentiation is with respect to time $t$ and the equations have a countable set of first integrals. Constructions are also given for first integrals of dynamical systems preserving certain differential forms, and new constructions of matrix differential equations having large families of first integrals. Bibliography: 18 titles.
@article{IM2_1988_31_1_a1,
     author = {O. I. Bogoyavlenskii},
     title = {Some constructions of integrable dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {47--75},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a1/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Some constructions of integrable dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 47
EP  - 75
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a1/
LA  - en
ID  - IM2_1988_31_1_a1
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Some constructions of integrable dynamical systems
%J Izvestiya. Mathematics 
%D 1988
%P 47-75
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a1/
%G en
%F IM2_1988_31_1_a1
O. I. Bogoyavlenskii. Some constructions of integrable dynamical systems. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 47-75. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a1/

[1] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR

[2] Kac M., van Moerbeke P., “On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices”, Adv. in Math., 16:2 (1975), 160–169 | DOI | MR | Zbl

[3] Moser J., “Three Integrable Hamiltonian Systems Connected with Isospectral Deformations”, Adv. in Math., 16:2 (1975), 197–220 | DOI | MR | Zbl

[4] Novikov S. P., Teoriya solitonov, Nauka, M., 1980 | MR

[5] Toda M., Theory of Nonlinear Lattices, Springer-Verlag, Berlin, 1981 | MR | Zbl

[6] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, Ufa, 1982, 95–114 | Zbl

[7] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1978 | MR

[8] Manakov S. V., “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, Uspekhi matem. nauk, 31:5 (1976), 245–246 | MR | Zbl

[9] Melnikov V. K., “Ob uravneniyakh, porozhdennykh operatornym sootnosheniem”, Matem. sb., 108 (1979), 379–392 | MR

[10] Novikov S. P., “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Sovremennye problemy matematiki (Itogi nauki i tekhniki), 23, VINITI, M., 1983, 3–32

[11] Moser J., “Finitely many mass points on the line under the influence of an exponential potential”, An integrable system, Proc. Battelle Rencontres, Lecture Notes in Physics, Springer, 1975 | MR | Zbl

[12] Manakov S. B., “Zametka ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl

[13] Bogoyavlenskii O. I., “Novaya integriruemaya zadacha klassicheskoi mekhaniki”, Trudy III Mezhdunarodnogo simpoziuma po izbrannym problemam statisticheskoi mekhaniki, 1, OIYaI, Dubna, 1984, 165–169

[14] Bogoyavlenskii O. I., “Dva integriruemykh sluchaya dinamiki tverdogo tela v silovom pole”, Dokl. AN SSSR, 275:6 (1984), 1359–1363 | MR | Zbl

[15] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[16] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, Dokl. AN SSSR, 287:5 (1986), 1105–1109 | MR | Zbl

[17] Mikhailov A. V., “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448

[18] Magri F., “A simple model of the integrable Hamiltonian equation”, Journal of Mathem. Physics, 19:5 (1978), 1156–1163 | DOI | MR