Galois moduli of period~$p$ group schemes over a~ring of Witt vectors
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 1-46

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions (completely sufficient only when $p>2$) are obtained that are satisfied by the Galois modules of the geometric points of a finite commutative period $p$ group scheme defined over a ring of Witt vectors. As an application of these results it is proved that there are no abelian schemes over the ring of integers of the fields $\mathbf Q$, $\mathbf Q(\sqrt{-1})$, $\mathbf Q(\sqrt{\pm2})$, $\mathbf Q(\sqrt{-3})$, $\mathbf Q(\sqrt{-7})$, $\mathbf Q(\sqrt[5]{1})$. The case of the field $\mathbf Q$ answers a conjecture of Shafarevich (at the 1962 ICM in Stockholm) that there do not exist Abelian varieties or curves of genus $g\geqslant1$ defined over this field and having everywhere good reduction. Bibliography: 15 titles.
@article{IM2_1988_31_1_a0,
     author = {V. A. Abrashkin},
     title = {Galois moduli of period~$p$ group schemes over a~ring of {Witt} vectors},
     journal = {Izvestiya. Mathematics },
     pages = {1--46},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a0/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - Galois moduli of period~$p$ group schemes over a~ring of Witt vectors
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 1
EP  - 46
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a0/
LA  - en
ID  - IM2_1988_31_1_a0
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T Galois moduli of period~$p$ group schemes over a~ring of Witt vectors
%J Izvestiya. Mathematics 
%D 1988
%P 1-46
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a0/
%G en
%F IM2_1988_31_1_a0
V. A. Abrashkin. Galois moduli of period~$p$ group schemes over a~ring of Witt vectors. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 1-46. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a0/