Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 577-597

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors propose a method of effective presentation of finitely generated pro-$p$-groups, and use it to study the elementary theories of such groups. They prove that elementarily equivalent finitely generated pro-$p$-groups are isomorphic. The main result is the following criterion: the elementary theory of a finitely generated nilpotent pro-$p$-group $G$ is decidable if and only if $G$ is effectively presented. Bibliography: 18 titles.
@article{IM2_1988_30_3_a6,
     author = {A. G. Myasnikov and V. N. Remeslennikov},
     title = {Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {577--597},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/}
}
TY  - JOUR
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 577
EP  - 597
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/
LA  - en
ID  - IM2_1988_30_3_a6
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups
%J Izvestiya. Mathematics 
%D 1988
%P 577-597
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/
%G en
%F IM2_1988_30_3_a6
A. G. Myasnikov; V. N. Remeslennikov. Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 577-597. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/