Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 577-597.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors propose a method of effective presentation of finitely generated pro-$p$-groups, and use it to study the elementary theories of such groups. They prove that elementarily equivalent finitely generated pro-$p$-groups are isomorphic. The main result is the following criterion: the elementary theory of a finitely generated nilpotent pro-$p$-group $G$ is decidable if and only if $G$ is effectively presented. Bibliography: 18 titles.
@article{IM2_1988_30_3_a6,
     author = {A. G. Myasnikov and V. N. Remeslennikov},
     title = {Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {577--597},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/}
}
TY  - JOUR
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 577
EP  - 597
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/
LA  - en
ID  - IM2_1988_30_3_a6
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups
%J Izvestiya. Mathematics 
%D 1988
%P 577-597
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/
%G en
%F IM2_1988_30_3_a6
A. G. Myasnikov; V. N. Remeslennikov. Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 577-597. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a6/

[1] Kargapolov M. I. i dr., “Algoritmicheskie voprosy dlya $n$-stepennykh grupp”, Algebra i logika, 8:6 (1969), 643–659 | MR | Zbl

[2] Myasnikov A. G., Remeslennikov V. N., “Klassifikatsiya stepennykh nilpotentnykh grupp po elementarnym svoistvam”, Matematicheskaya logika i teoriya algoritmov, Nauka, Novosibirsk, 1982, 65–87

[3] Myasnikov A. G., Remeslennikov V. N., “Formulnost mnozhestva maltsevskikh baz i elementarnye teorii konechnomernykh algebr, 1”, Sib. matem. zhurn., 23:5 (1982), 152–167 | MR | Zbl

[4] Myasnikov A. G., Remeslennikov V. N., “Formulnost mnozhestva maltsevskikh baz i elementarnye teorii konechnomernykh algebr, II”, Sib. matem. zhurn., 24:2 (1983), 97–113 | MR | Zbl

[5] Ershov Yu. L., “Ob elementarnykh teoriyakh grupp”, Dokl. AN SSSR, 203:6 (1972), 1240–1243 | MR | Zbl

[6] Turing A. M., “On computable numbers, with an application to the Eutschelidungs problem”, Proc. London Math. Soc. Ser. 2, 42 (1936), 236–265

[7] Rice H. G., “Recursive real number”, Proc. Amer. Math. Soc., 5 (1954), 784–791 | DOI | MR | Zbl

[8] Dubrovsky D. L., “Some subfields of $p$ and their non-Standard analogies”, Can. J. Math., 26:2 (1974), 473–491 | MR | Zbl

[9] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR

[10] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[11] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964 | MR

[12] Prestel A., Roquette P., “Formally $p$-adic field”, Lect. Notes Math., 1050, 1984, 167 p | MR | Zbl

[13] Saks Dzh., Teoriya nasyschennykh modelei, Mir, M., 1976 | MR

[14] Kokh X., Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR

[15] Kholl F., “Nilpotentnye gruppy”, Matematika, 12:1 (1968), 3–36 | MR

[16] Warfield R., Nilpotent groups, Lect. Notes Math., 513, 1976 | MR | Zbl

[17] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya gruppy, Nauka, M., 1974 | MR | Zbl

[18] Noskov G. A., Remeslennikov V. N., Romankov V. A., “Beskonechnye gruppy”, Algebra. Topologiya. Geometriya (Itogi nauki i tekhniki), 17, M., 1979, 65–157 | MR | Zbl