Isotrivial families of curves on affine surfaces and characterization of the affine plane
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 503-532
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result is a characterization of $\mathbf C^2$ as a smooth acyclic algebraic surface on which there exist simply connected algebraic curves (possibly singular and reducible) or isotrivial (nonexceptional) families of curves with base $\mathbf C$. In particular, such curves and families cannot exist on Ramanujam surfaces – topologically contractible smooth algebraic surfaces not isomorphic to $\mathbf C^2$. The proof is based on a structure theorem which describes the degenerate fibers of families of curves whose geometric monodromy has finite order. Techniques of hyperbolic complex analysis are used; an important role is played by regular actions of the group $\mathbf C^*$.
Bibliography: 40 titles.
@article{IM2_1988_30_3_a3,
author = {M. G. Zaidenberg},
title = {Isotrivial families of curves on affine surfaces and characterization of the affine plane},
journal = {Izvestiya. Mathematics },
pages = {503--532},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/}
}
TY - JOUR AU - M. G. Zaidenberg TI - Isotrivial families of curves on affine surfaces and characterization of the affine plane JO - Izvestiya. Mathematics PY - 1988 SP - 503 EP - 532 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/ LA - en ID - IM2_1988_30_3_a3 ER -
M. G. Zaidenberg. Isotrivial families of curves on affine surfaces and characterization of the affine plane. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 503-532. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/