Isotrivial families of curves on affine surfaces and characterization of the affine plane
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 503-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is a characterization of $\mathbf C^2$ as a smooth acyclic algebraic surface on which there exist simply connected algebraic curves (possibly singular and reducible) or isotrivial (nonexceptional) families of curves with base $\mathbf C$. In particular, such curves and families cannot exist on Ramanujam surfaces – topologically contractible smooth algebraic surfaces not isomorphic to $\mathbf C^2$. The proof is based on a structure theorem which describes the degenerate fibers of families of curves whose geometric monodromy has finite order. Techniques of hyperbolic complex analysis are used; an important role is played by regular actions of the group $\mathbf C^*$. Bibliography: 40 titles.
@article{IM2_1988_30_3_a3,
     author = {M. G. Zaidenberg},
     title = {Isotrivial families of curves on affine surfaces and characterization of the affine plane},
     journal = {Izvestiya. Mathematics },
     pages = {503--532},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/}
}
TY  - JOUR
AU  - M. G. Zaidenberg
TI  - Isotrivial families of curves on affine surfaces and characterization of the affine plane
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 503
EP  - 532
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/
LA  - en
ID  - IM2_1988_30_3_a3
ER  - 
%0 Journal Article
%A M. G. Zaidenberg
%T Isotrivial families of curves on affine surfaces and characterization of the affine plane
%J Izvestiya. Mathematics 
%D 1988
%P 503-532
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/
%G en
%F IM2_1988_30_3_a3
M. G. Zaidenberg. Isotrivial families of curves on affine surfaces and characterization of the affine plane. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 503-532. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/

[1] Saito H., “Fonctions entiéres qui se redusent à certains polinomes (II)”, Osaka J. Math., 14 (1977), 649–674 | MR | Zbl

[2] Ramanujam C. A., “A topological characterisation of the affine plane as an algebraic variety”, Ann. Math., 94 (1971), 69–88 | DOI | MR | Zbl

[3] Fujita T., “On the topology of non-complete algebraic surfaces”, J. Fac. Sci. Univ. Tokyo, Ser. 1A, 29:3 (1982), 503–566 | MR | Zbl

[4] Sakai F., “Kodaira dimensions of complements of divisors”, Compl. Anal. and Algebr. Geom., Iwanami, Tokyo, 1977, 239–257 | MR

[5] Iitaka S., “Logarithmic Kodaira dimension of algebraic varieties”, Compl. Anal. and Algebr. Geom., 1977, 175–189, Iwanami, Tokyo | MR

[6] Zaidenberg M. G., “Ratsionalnye deistviya gruppy $\mathbf{C}^*$ na $\mathbf{C}^2$, ikh kvaziinvarianty i algebraicheskie krivye v $\mathbf{C}^2$ s eilerovoi kharakteristikoi, 1”, Dokl. AN SSSR, 280:2 (1985), 277–280 | MR | Zbl

[7] Zaidenberg M. G., “Struktury konechnykh vyrozhdenii semeistv krivykh na affinnykh poverkhnostyakh i kharakterizatsiya affinnoi ploskosti”, Dokl. AN SSSR, 287:2 (1986), 272–276 | MR | Zbl

[8] Van de Ven A. “Analytic compactifications of complex homology cells”, Math. Ann., 147 (1962), 189–204 | DOI | MR | Zbl

[9] Miyanishi M., “An algebraic characterization of the affine plane”, J. Math. Kyoto Univ., 15 (1975), 169–184 | MR | Zbl

[10] Miyanishi M., “An algebro-topological characterization of the affine space of dimension three”, Amer. J. Math., 106:6 (1984) | DOI | MR | Zbl

[11] Tronin S. N., “Ob odnoi konstruktsii v teorii proektivnykh algebr”, Matem. zametki, 35:5 (1984), 647–652 | MR | Zbl

[12] Miyanishi M., Non-complete algebraic surfaces, Springer, Berlin, 1981 | Zbl

[13] Suzuki M., “Propriétés topologiques des polynomes de deux variables complexes, et automorphismes algébriques de l'espace $\mathbf{C}^2$”, J. Math. Soc. Japan, 26:2 (1974), 241–257 | DOI | MR | Zbl

[14] Suzuki M., “Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes”, Ann. Sci. Ec. Norm. Sup., 10 (1977), 517–546 | MR | Zbl

[15] Kaliman Sh. I., “Polinomy na $\mathbf{C}^2$ s izomorfnymi obschimi sloyami”, Dokl. AN SSSR, 288:1 (1986), 39–42 | MR | Zbl

[16] Imayoshi Y., “Holomorphic families of Riemann surfaces and Teichmüller spaces, II”, Tohoku Math. J., 31 (1979), 469–489 | DOI | MR | Zbl

[17] Engber M., “Teichmüller spaces and representability of functors”, Trans. Amer. Math. Soc., 201 (1975), 213–226 | DOI | MR | Zbl

[18] Earle C. J., “On holomorphic families of pointed Riemann surfaces”, Bull. Amer. Math. Soc., 79 (1973), 163–166 | DOI | MR | Zbl

[19] Abhyankar S. S., Moh T. T., “Embeddings of the line in the plane”, J. Reine Angew. Math., 276 (1975), 148–166 | MR | Zbl

[20] Zaidenberg M. G., Lin V. Ya., “Neprivodimaya odnosvyaznaya algebraicheskaya krivaya v $\mathbf{C}^2$ ekvivalentna kvaziodnorodnoi”, Dokl. AN SSSR, 271:5 (1983), 1048–1052 | MR | Zbl

[21] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[22] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[23] Zaidenberg M. G., “O giperbolicheskoi vlozhennosti dopolnenii k divizoram i predelnom povedenii metriki Kobayasi–Roidena”, Matem. sb., 127:5 (1985), 55–71 | MR | Zbl

[24] Algebraicheskie poverkhnosti, Tr. MIAN, 75, 1965 | MR | Zbl

[25] Bertin J., “Sur la topologie des surfaces affines reglees”, Compos. Math., 47:1 (1982), 71–83 | MR | Zbl

[26] Bertin J., “Pinceaux de droites et automorphismes des surfaces affines”, J. Reine Angew. Math., 341 (1983), 32–53 | MR | Zbl

[27] Abikof U., Veschestvenno-analiticheskaya teoriya prostranstv Teikhmyullera, Mir, M., 1985 | MR | Zbl

[28] Wolpert S., “The length spectra as moduli for compact Riemann surfaces”, Ann. Math., 109 (1979), 323–351 | DOI | MR | Zbl

[29] Bers L., “Uniformizatsiya. Moduli i kleinovy gruppy”, Uspekhi matem. nauk, 28:4 (1973), 153–198 | MR | Zbl

[30] Birman J. S., Braids, lins, and mapping class groups, Princeton Univ. Press, Princeton, 1975 | MR | Zbl

[31] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[32] Gutwirth A., “An inequality for certain pencils of plane curves”, Proc. Amer. Math. Soc., 12:4 (1961), 631–638 | DOI | MR | Zbl

[33] Nagata M., “A theorem of Gutwirth”, J. Math. Kyoto Univ., 11:1 (1971), 149–154 | MR | Zbl

[34] Parshin A. N., “Algebraicheskie krivye nad funktsionalnymi polyami”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1191–1218

[35] Arakelov S. Yu., “Semeistva algebraicheskikh krivykh s fiksirovannymi vyrozhdeniyami”, Izv. AN SSSR. Ser. matem., 35:6 (1971), 1269–1293 | MR | Zbl

[36] Kiernan P. J., “Extensions of holomorphic maps”, Trans. Amer. Math. Soc., 172 (1972), 347–355 | DOI | MR

[37] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[38] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[39] Gutwirth A., “The action of an algebraic torus on the affine plane”, Trans. Amer. Math. Soc., 105 (1962), 407–414 | DOI | MR | Zbl

[40] Kambayashi T., Rassell P., “On linearizing algebraic torus action”, J. Pure and Appl. Algebra, 23:3 (1982), 243–250 | DOI | MR | Zbl