Isotrivial families of curves on affine surfaces and characterization of the affine plane
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 503-532

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is a characterization of $\mathbf C^2$ as a smooth acyclic algebraic surface on which there exist simply connected algebraic curves (possibly singular and reducible) or isotrivial (nonexceptional) families of curves with base $\mathbf C$. In particular, such curves and families cannot exist on Ramanujam surfaces – topologically contractible smooth algebraic surfaces not isomorphic to $\mathbf C^2$. The proof is based on a structure theorem which describes the degenerate fibers of families of curves whose geometric monodromy has finite order. Techniques of hyperbolic complex analysis are used; an important role is played by regular actions of the group $\mathbf C^*$. Bibliography: 40 titles.
@article{IM2_1988_30_3_a3,
     author = {M. G. Zaidenberg},
     title = {Isotrivial families of curves on affine surfaces and characterization of the affine plane},
     journal = {Izvestiya. Mathematics },
     pages = {503--532},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/}
}
TY  - JOUR
AU  - M. G. Zaidenberg
TI  - Isotrivial families of curves on affine surfaces and characterization of the affine plane
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 503
EP  - 532
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/
LA  - en
ID  - IM2_1988_30_3_a3
ER  - 
%0 Journal Article
%A M. G. Zaidenberg
%T Isotrivial families of curves on affine surfaces and characterization of the affine plane
%J Izvestiya. Mathematics 
%D 1988
%P 503-532
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/
%G en
%F IM2_1988_30_3_a3
M. G. Zaidenberg. Isotrivial families of curves on affine surfaces and characterization of the affine plane. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 503-532. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a3/