On~the number of Lie groups containing uniform lattices isomorphic to a~given group
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 487-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions that concern the set of Lie groups containing uniform lattices are examined. It is proved that the set of all such Lie groups (considered up to isomorphism) is countable. A more precise result is proved for the case of semisimple Lie groups. Bibliography: 20 titles.
@article{IM2_1988_30_3_a2,
     author = {V. V. Gorbatsevich},
     title = {On~the number of {Lie} groups containing uniform lattices isomorphic to a~given group},
     journal = {Izvestiya. Mathematics },
     pages = {487--501},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On~the number of Lie groups containing uniform lattices isomorphic to a~given group
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 487
EP  - 501
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/
LA  - en
ID  - IM2_1988_30_3_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On~the number of Lie groups containing uniform lattices isomorphic to a~given group
%J Izvestiya. Mathematics 
%D 1988
%P 487-501
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/
%G en
%F IM2_1988_30_3_a2
V. V. Gorbatsevich. On~the number of Lie groups containing uniform lattices isomorphic to a~given group. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 487-501. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/

[1] Auslender L., Grin L., Khan F., Potoki na odnorodnykh prostranstvakh, Mir, M., 1966 | MR

[2] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. AMS, 79:2 (1973), 227–285 | DOI | MR

[3] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR

[4] Gorbatsevich V. V., “Reshetki v razreshimykh gruppakh Li i deformatsii odnorodnykh prostranstv”, Matem. sb., 91:2 (1973), 234–252 | Zbl

[5] Gorbatsevich V. V., “O gruppakh Li, tranzitivnykh na kompaktnykh solvmnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 285–307 | MR | Zbl

[6] Gorbatsevich V. V., “O strukture kompaktnykh odnorodnykh prostranstv”, Dokl. AN SSSR, 249:5 (1979), 1033–1036 | MR

[7] Gorbatsevich V. V., “O gruppakh Li s reshetkami i ikh svoistvakh”, Dokl. AN SSSR, 287:1 (1986), 33–37 | MR | Zbl

[8] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[9] Hill R., “On characteristic classes of groups and bundles of $K(\pi,1)$”, Proc. AMS, 40:2 (1973), 597–613 | DOI | MR

[10] Maltsev A. I., “K teorii grupp Li v tselom”, Matem. sb., 16:2 (1945), 163–190

[11] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 13:1 (1949), 9–32

[12] Milovanov M. V., “Opisanie razreshimykh grupp Li s zadannoi ravnomernoi podgruppoi”, Matem. sb., 113:1 (1980), 98–117 | MR | Zbl

[13] Mostow G., “On the topology of homogeneous spaces of finite measure”, Symp. Math. Ins. Naz. Alta Math., 16, L., N.Y., 1975, 375–398 | MR | Zbl

[14] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[15] Richardson R., “A rigidity theorem for subalgebras of Lie and associative algebras”, Ill. J. Math., 11:1 (1967), 92–110 | MR | Zbl

[16] Sirota A. I., Solodovnikov A. S., “Nekompaktnye poluprostye gruppy Li”, Uspekhi matem. nauk, 18:3 (1963), 87–144 | MR | Zbl

[17] Starkov A. N., “Kontrprimer k odnoi teoreme o reshetkakh v gruppakh Li”, Vestn. MGU. Matem., mekh., 1984, no. 5, 68–69 | MR | Zbl

[18] Wang H.-C., “On the deformations of lattices in a Lie group”, Amer. J. Math., 85:2 (1963), 189–212 | DOI | MR | Zbl

[19] Wang S.-P., “The dual space of semi-simple Lie groups”, Amer. J. Math., 91:4 (1969), 921–937 | DOI | MR | Zbl

[20] Raghunathan M., “Torsion in cocompact lattices in coverings of $SO(2,n)$”, Math. Ann., 266:4 (1984), 403–419 | DOI | MR | Zbl