On the number of Lie groups containing uniform lattices isomorphic to a given group
Izvestiya. Mathematics, Tome 30 (1988) no. 3, pp. 487-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions that concern the set of Lie groups containing uniform lattices are examined. It is proved that the set of all such Lie groups (considered up to isomorphism) is countable. A more precise result is proved for the case of semisimple Lie groups. Bibliography: 20 titles.
@article{IM2_1988_30_3_a2,
     author = {V. V. Gorbatsevich},
     title = {On~the number of {Lie} groups containing uniform lattices isomorphic to a~given group},
     journal = {Izvestiya. Mathematics},
     pages = {487--501},
     year = {1988},
     volume = {30},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On the number of Lie groups containing uniform lattices isomorphic to a given group
JO  - Izvestiya. Mathematics
PY  - 1988
SP  - 487
EP  - 501
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/
LA  - en
ID  - IM2_1988_30_3_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On the number of Lie groups containing uniform lattices isomorphic to a given group
%J Izvestiya. Mathematics
%D 1988
%P 487-501
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/
%G en
%F IM2_1988_30_3_a2
V. V. Gorbatsevich. On the number of Lie groups containing uniform lattices isomorphic to a given group. Izvestiya. Mathematics, Tome 30 (1988) no. 3, pp. 487-501. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a2/

[1] Auslender L., Grin L., Khan F., Potoki na odnorodnykh prostranstvakh, Mir, M., 1966 | MR

[2] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. AMS, 79:2 (1973), 227–285 | DOI | MR

[3] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR

[4] Gorbatsevich V. V., “Reshetki v razreshimykh gruppakh Li i deformatsii odnorodnykh prostranstv”, Matem. sb., 91:2 (1973), 234–252 | Zbl

[5] Gorbatsevich V. V., “O gruppakh Li, tranzitivnykh na kompaktnykh solvmnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 285–307 | MR | Zbl

[6] Gorbatsevich V. V., “O strukture kompaktnykh odnorodnykh prostranstv”, Dokl. AN SSSR, 249:5 (1979), 1033–1036 | MR

[7] Gorbatsevich V. V., “O gruppakh Li s reshetkami i ikh svoistvakh”, Dokl. AN SSSR, 287:1 (1986), 33–37 | MR | Zbl

[8] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[9] Hill R., “On characteristic classes of groups and bundles of $K(\pi,1)$”, Proc. AMS, 40:2 (1973), 597–613 | DOI | MR

[10] Maltsev A. I., “K teorii grupp Li v tselom”, Matem. sb., 16:2 (1945), 163–190

[11] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 13:1 (1949), 9–32

[12] Milovanov M. V., “Opisanie razreshimykh grupp Li s zadannoi ravnomernoi podgruppoi”, Matem. sb., 113:1 (1980), 98–117 | MR | Zbl

[13] Mostow G., “On the topology of homogeneous spaces of finite measure”, Symp. Math. Ins. Naz. Alta Math., 16, L., N.Y., 1975, 375–398 | MR | Zbl

[14] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[15] Richardson R., “A rigidity theorem for subalgebras of Lie and associative algebras”, Ill. J. Math., 11:1 (1967), 92–110 | MR | Zbl

[16] Sirota A. I., Solodovnikov A. S., “Nekompaktnye poluprostye gruppy Li”, Uspekhi matem. nauk, 18:3 (1963), 87–144 | MR | Zbl

[17] Starkov A. N., “Kontrprimer k odnoi teoreme o reshetkakh v gruppakh Li”, Vestn. MGU. Matem., mekh., 1984, no. 5, 68–69 | MR | Zbl

[18] Wang H.-C., “On the deformations of lattices in a Lie group”, Amer. J. Math., 85:2 (1963), 189–212 | DOI | MR | Zbl

[19] Wang S.-P., “The dual space of semi-simple Lie groups”, Amer. J. Math., 91:4 (1969), 921–937 | DOI | MR | Zbl

[20] Raghunathan M., “Torsion in cocompact lattices in coverings of $SO(2,n)$”, Math. Ann., 266:4 (1984), 403–419 | DOI | MR | Zbl