Distribution in the mean of arithmetic functions in short intervals in progressions
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 315-335
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that arithmetic functions of a certain class including, in particular, the functions $\Lambda(n)$, $\mu(n)$, and $\tau_r(n)$, on the intervals $x$, $y>x^{7/12}$, are uniformly distributed in progressions. The result for $\Lambda(n)$ is as follows. Let
$$
\delta(Q,x,y)=\sum_{k\leqslant Q}\max_{(a,k)=1}\max_{\frac x2\leqslant N\leqslant x}\max_{h\leqslant y}\Bigg|\sum_{\substack{N\leqslant N+h\\n\equiv a (\operatorname{mod}k)}}\Lambda(n)-\frac h{\varphi(k)}\Bigg|.
$$
Then for $x^{3/5}(\log x)^{2(A+64)+1}\leqslant y\leqslant x$ and $Q=yx^{-1/2}(\log x)^{-(A+64)}$ we have $\delta(Q,x,y)\ll y\log^{-A}x$. If $x^{7/12}$ then this estimate holds, but with $Q=yx^{-11/20-\delta}$, $\delta>0$.
Bibliography: 16 titles.
@article{IM2_1988_30_2_a6,
author = {N. M. Timofeev},
title = {Distribution in the mean of arithmetic functions in short intervals in progressions},
journal = {Izvestiya. Mathematics },
pages = {315--335},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a6/}
}
N. M. Timofeev. Distribution in the mean of arithmetic functions in short intervals in progressions. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 315-335. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a6/