An~estimate of the number of parameters defining an~$n$-dimensional algebra
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 283-294

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider an arbitrary family of nonisomorphic $n$-dimensional complex Lie algebras (respectively, associative algebras, commutative algebras) that depends continuously on a certain set of parameters $t_1,\dots,t_N\in\mathbf C$. The asymptotics is obtained for the largest number $N$ of parameters possible when $n$ is fixed: $\frac 2{27}n^3+O(n^{8/3})$, $\frac 4{27}n^3+O(n^{8/3})$, $\frac 2{27}n^3+O(n^{8/3})$ respectively. A decomposition into irreducible components is also studied for the algebraic variety $\text{Lie}_n$ of all possible Lie algebra structures on the linear space $\mathbf C^n$. Bibliography: 19 titles.
@article{IM2_1988_30_2_a4,
     author = {Yu. A. Neretin},
     title = {An~estimate of the number of parameters defining an~$n$-dimensional algebra},
     journal = {Izvestiya. Mathematics },
     pages = {283--294},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - An~estimate of the number of parameters defining an~$n$-dimensional algebra
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 283
EP  - 294
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/
LA  - en
ID  - IM2_1988_30_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T An~estimate of the number of parameters defining an~$n$-dimensional algebra
%J Izvestiya. Mathematics 
%D 1988
%P 283-294
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/
%G en
%F IM2_1988_30_2_a4
Yu. A. Neretin. An~estimate of the number of parameters defining an~$n$-dimensional algebra. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 283-294. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/