An~estimate of the number of parameters defining an~$n$-dimensional algebra
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 283-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider an arbitrary family of nonisomorphic $n$-dimensional complex Lie algebras (respectively, associative algebras, commutative algebras) that depends continuously on a certain set of parameters $t_1,\dots,t_N\in\mathbf C$. The asymptotics is obtained for the largest number $N$ of parameters possible when $n$ is fixed: $\frac 2{27}n^3+O(n^{8/3})$, $\frac 4{27}n^3+O(n^{8/3})$, $\frac 2{27}n^3+O(n^{8/3})$ respectively. A decomposition into irreducible components is also studied for the algebraic variety $\text{Lie}_n$ of all possible Lie algebra structures on the linear space $\mathbf C^n$. Bibliography: 19 titles.
@article{IM2_1988_30_2_a4,
     author = {Yu. A. Neretin},
     title = {An~estimate of the number of parameters defining an~$n$-dimensional algebra},
     journal = {Izvestiya. Mathematics },
     pages = {283--294},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - An~estimate of the number of parameters defining an~$n$-dimensional algebra
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 283
EP  - 294
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/
LA  - en
ID  - IM2_1988_30_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T An~estimate of the number of parameters defining an~$n$-dimensional algebra
%J Izvestiya. Mathematics 
%D 1988
%P 283-294
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/
%G en
%F IM2_1988_30_2_a4
Yu. A. Neretin. An~estimate of the number of parameters defining an~$n$-dimensional algebra. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 283-294. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/

[1] Borel L., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[2] Morozov V. V., “Klassifikatsiya nilponentnykh algebr Li shestogo poryadka”, Izv. VUZov, matem., 1958, no. 4, 161–171 | MR | Zbl

[3] Kirillov A. A., Neretin Yu. A., “Mnogoobrazie $A_n$ struktur $n$-mernykh algebr Li”, Nekotorye voprosy sovremennogo analiza, MGU, M., 1984, 42–56 | MR

[4] Suprunenko D. A., Tyshkevich R. I., Perestanovochnye matritsy, Nauka i tekhnika, Minsk, 1966 | MR

[5] Fuks D. B., Beskonechnomernye algebry Li, Nauka, M., 1984 | MR | Zbl

[6] Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR

[7] Artin M., “On the solution of analytic equations”, Inv. Math., 5 (1968), 277–291 | DOI | MR | Zbl

[8] Carles R., “Sur le certaines classes d'orhites ouvertes dans les algebres de Lie”, Compt. Rend. Ac. Sci., 293A, 545–547 | MR

[9] Carles R., Varieties d'algebres de Lie: point de vue global et rigidite, These, Univ. de Poitiers, 1984

[10] Gerstenhaber M., “On the deformations of rings and algebras”, Ann. Math., Ser. 2., 73 (1961), 324–348 | DOI | MR | Zbl

[11] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math. Ser. 2, 73 (1961), 324–348 | DOI | MR | Zbl

[12] Mazzola G., “The algebraic and geometric classification of associative algebras of dimension five”, Manuscr. Math., 27 (1979), 81–101 | DOI | MR | Zbl

[13] Mazzola G., “Generic finite schemes and Hochschild cocycles”, Comm. Math. Helv., 55 (1980), 267–293 | DOI | MR | Zbl

[14] Richardson R. W., “On the rigidity of semi-direct products of Lie algebras”, Pacif. J. Math., 22 (1967), 339–344 | MR | Zbl

[15] Richardson R. W., “Commuting varieties of semisimple Lie algebras and algebraic groups”, Compos. Math., 38 (1979), 322–327 | MR

[16] Sims Ch., “Enumerating of $p$-groups”, Proc. Lond. Math. Soc., 15 (1965), 151–166 | DOI | MR | Zbl

[17] Vergne M., “Cohomologie de algebres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116 | MR | Zbl

[18] Kruse R. L., Price D. T., “Enumerating finite rings”, J. Lond. Math. Soc., Ser. 2, 2 (1970), 149–159 | DOI | MR | Zbl

[19] Hochschild G., Serre J.-P, “Cohomology of Lie algebras”, Ann. Math., Ser. 2, 57 (1953), 591–603 | DOI | MR | Zbl