An~estimate of the number of parameters defining an~$n$-dimensional algebra
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 283-294
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider an arbitrary family of nonisomorphic $n$-dimensional complex Lie algebras (respectively, associative algebras, commutative algebras) that depends continuously on a certain set of parameters $t_1,\dots,t_N\in\mathbf C$. The asymptotics is obtained for the largest number $N$ of parameters possible when $n$ is fixed:
$\frac 2{27}n^3+O(n^{8/3})$, $\frac 4{27}n^3+O(n^{8/3})$, $\frac 2{27}n^3+O(n^{8/3})$
respectively. A decomposition into irreducible components is also studied for the algebraic variety $\text{Lie}_n$ of all possible Lie algebra structures on the linear space $\mathbf C^n$.
Bibliography: 19 titles.
@article{IM2_1988_30_2_a4,
author = {Yu. A. Neretin},
title = {An~estimate of the number of parameters defining an~$n$-dimensional algebra},
journal = {Izvestiya. Mathematics },
pages = {283--294},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/}
}
Yu. A. Neretin. An~estimate of the number of parameters defining an~$n$-dimensional algebra. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 283-294. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a4/